Our understanding is limited on how fish adjust the effective permeability of their branchial epithelium to ions and water while altering O uptake rate (MO) with acute and chronic changes in temperature. We investigated the effects of acclimation temperature (8 °C, 13 °C and 18 °C) and acute temperature challenges [acute rise (acclimated at 8 °C, measured at 13 °C and 18 °C), acute drop (acclimated at 18 °C, measured at 8 °C and 13 °C) and intermediate (acclimated at 13 °C, measured at 8 °C and 18 °C)] on routine MO, diffusive water flux, and net sodium loss rates in 24-h fasted rainbow trout (Oncorhynchus mykiss). In the temperature challenge tests, measurements were made during the first hour. In acclimated trout at all temperatures, allometric mass scaling coefficients were much higher for diffusive water flux than for MO. Furthermore, the diffusive water flux rate was more responsive (overall Q = 2.75) compared to MO (Q = 1.80) over the 8-18 °C range, and for both, Q values were greater at 8-13 °C than at 13-18 °C. The net Na flux rates were highly sensitive to acclimation temperature with an overall Q of 3.01 for 8-18 °C. In contrast, very different patterns occurred in trout subjected to acute temperature challenges. The net Na flux rate was temperature-insensitive with a Q around 1.0. Both MO and diffusive water flux rates exhibited lower Q values than for the acclimated rates in response to either acute increases or decreases in temperature. These results fit Pattern 5 of Precht (undercompensation, reverse effect) and more precisely Pattern IIB of Prosser (reverse translation). These inverse compensatory patterns suggest that trout do not alter their rates very much when undergoing acute thermal challenges (diurnal fluctuations, migration through the thermocline). The greater changes seen with acclimation may be adaptive to long-term seasonal changes in temperature. We discuss the roles of aquaporins, spontaneous activity, and recent feeding in these responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-020-01259-4DOI Listing

Publication Analysis

Top Keywords

diffusive water
20
water flux
20
acclimation temperature
12
acute temperature
12
temperature challenges
12
temperature
10
reverse translation
8
effects acclimation
8
flux net
8
net sodium
8

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

The microbial pollution status of river surface water is important to ensure a river-based quality drinking water supply for the public. The present study aimed to investigate bacterial contamination status in the upper Mahaweli River, the main drinking water supplier to the hill country of Sri Lanka. Both the raw surface water and treated water, taken at 14 drinking water treatment plants (DWTPs) along the river segment of 60 km between Kotmale and Victoria reservoirs, were tested for total bacterial counts (TBC), total coliform counts (TCC) and faecal coliform counts (FCC).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Background: Genome-wide association studies demonstrated that immune suppressive receptor CD33 variants are associated with high susceptibility to developing Alzheimer's disease (AD). Human CD33 (hCD33) regulates microglial immune response and clearance ability. However, the differential regulation of phagocytosis by human and mouse CD33 imposes constraints on utilizing the mouse model for investigating the role of CD33 in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!