Noncrop Habitat Use by Wild Bees (Hymenoptera: Apoidea) in a Mixed-Use Agricultural Landscape.

Environ Entomol

U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME.

Published: April 2020

Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ee/nvaa001DOI Listing

Publication Analysis

Top Keywords

bee abundance
20
united states
12
wild bee
12
lowbush blueberry
12
cover types
12
floral resources
12
abundance diversity
12
noncrop habitat
8
wild bees
8
landscape
8

Similar Publications

Assessing foraging landscape quality in Quebec's commercial beekeeping through remote sensing, machine learning, and survival analysis.

J Environ Manage

January 2025

Nectar Technologies Inc., 6250 Rue Hutchison #302, Montréal, QC, Canada. Electronic address:

Honey bees (Apis mellifera) play an important role in our agricultural systems. In recent years, beekeepers have reported high colony mortality rates in several parts of the world. Inadequate foraging landscapes are often cited as a major factor deterring honey bee colony health.

View Article and Find Full Text PDF

Wild solitary bees face a host of challenges from the simplification of landscapes and biodiversity loss to invasive species and urbanization. Pollinator researchers and restoration workers thus far gave much attention to increase flower cover to reduce the impact of these anthropogenic pressures. Over 30% of bee species need nonfloral resources such as leaves and resin for their survival and reproduction.

View Article and Find Full Text PDF

Disruption of host-associated microbial communities can have detrimental impacts on host health. However, the capacity of individual host-associated microbial communities to resist disturbance has not been well defined. Using a novel fecal sampling method for honey bees (Apis mellifera), we examined the resistance of the honey bee gut microbiome to disruption from a low dose of the antibiotic, tetracycline (4.

View Article and Find Full Text PDF

Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.

View Article and Find Full Text PDF

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!