For the compounds promising for use as n-type semiconductors in organic electronics and energy storage devices, hexaazatrinaphthylene (HATNA) and its derivative hexamethoxy-hexaazatrinaphthylene (HMHATA), the monomolecular processes occurring under the exposure of molecules to low-energy (0-15 eV) free electrons were studied by means of resonant electron capture negative ion mass spectrometry. Resonant electron attachment results in the formation of eminently long-lived molecular negative ions (MNIs) in an abnormally wide range of incident electron energy (E) from 0 to 5-7 eV. For both compounds, this observation serves as an indication of the strong electron-accepting properties and high stability of MNIs against electron autodetachment. A weak yield of the only fragment NIs, dehydrogenated anions, was detected for HATNA at E > 6 eV. MNIs of HMHATA are less stable to dissociative decay because of the presence of weakly bound terminal substituents. This is evidenced by the mass spectral observation of intense fragmentation occurring above E≈ 1 eV and leading to a loss of up to 3 methyl groups as the E increases. A series of metastable NI peaks observed in the mass spectra testify to the delayed and sequential nature of fragmentation. Based on the principles of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the theoretical model of dissociative decay of NIs was developed and then adopted to quantify the rates of ground-state anion decay via electron autodetachment. The experimentally measured electron autodetachment lifetimes and fragmentation rates were best reproduced by the model at molecular adiabatic electron affinities preset to 2.15 eV for HATNA and 1.88 eV for HMHATA, in reasonable agreement with the quantum chemical DFT PBE/3ζ predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp05397bDOI Listing

Publication Analysis

Top Keywords

electron autodetachment
12
molecular negative
8
negative ions
8
resonant electron
8
dissociative decay
8
electron
7
unified statistical
4
statistical rrkm
4
rrkm approach
4
fragmentation
4

Similar Publications

Spectroscopy and Dynamics of the Dipole-Bound States of -, -, and -Methylphenolate Anions.

J Phys Chem A

December 2024

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.

A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.

View Article and Find Full Text PDF

We show that strong molecular rotation drastically modifies the autodetachment of C_{2}^{-} ions in the lowest quartet electronic state a^{4}Σ_{u}^{+}. In the strong-rotation regime, levels of this state only decay by a process termed "rotationally assisted" autodetachment, whose theoretical description is worked out based on the nonlocal resonance model. For autodetachment linked with the exchange of six rotational quanta, the results reproduce a prominent, hitherto unexplained electron emission signal with a mean decay time near 3 ms, observed on stored C_{2}^{-} ions from a hot ion source.

View Article and Find Full Text PDF

Tumor hypoxia hampers radiotherapy efficacy, necessitating radiosensitizers. Substituted nucleobases offer advantages as radiosensitizers. They can be incorporated into DNA with minimal gene-expression alteration, selectively targeting tumor cells and having lower toxicity to normal tissues.

View Article and Find Full Text PDF

Photoelectron spectroscopy of deprotonated benzonitrile.

J Chem Phys

September 2024

School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom.

The recent discovery of cyano-substituted aromatic and two-ring polycyclic aromatic hydrocarbon molecules in Taurus Molecular Cloud-1 has prompted questions on how the electronic structure and excited-state dynamics of these molecules are linked with their existence and abundance. Here, we report a photodetachment and frequency- and angle-resolved photoelectron spectroscopy study of jet-cooled para-deprotonated benzonitrile (p-[Bzn-H]-). The adiabatic detachment energy was determined as 1.

View Article and Find Full Text PDF

State-specific dynamics of the dipole-bound state (DBS) of the cryogenically cooled deprotonated 4,4'-biphenol anion have been investigated by picosecond time-resolved pump-probe spectroscopy. For DBS vibrational states below the electron-detachment threshold, the relaxation rate is slow to give a lifetime (τ) longer than ∼5 ns, and it is attributed to the nonvalence-to-valence orbital transformation. For the DBS resonances above the detachment threshold, however, the lifetime decreases with the activation of autodetachment, whereas the otherwise zeroth DBS modes seem to be randomized by intramolecular vibrational energy redistribution (IVR), as manifested in the biexponential transients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!