Objective: Impaired glycemic control is a common comorbidity of obesity. E4orf1(E4), an adenovirus-derived protein, reduces the activity of insulin receptor substrate (IRS), yet activates Akt and promotes the membrane translocation of GLUT4, resulting in better glycemic control in mice. To develop a clinically suitable delivery system, here we constructed and tested liposome nanoparticles (NP), to deliver E4 to preadipocytes.
Methods: Glutathione-S-transferase (GST)-tagged E4 was encapsulated in Rhodamine-phosphatidylethanolamine (PE)-tagged soy-phosphatidylcholine-NP. The NP were characterized. Preadipocytes were treated with free E4, E4 containing NP (E4 NP) or E4-free NP (void NP).
Results: For void and E4 NP, the average size was ~150 and 130 nm, PDI was ~0.25 and 0.27, and Zeta potential was -23 and -25, respectively. The average encapsulation efficiency (EE) was ~50%. Cells treated with E4 showed maximum GST expression and Rhodamine signals at 24 h. The presence of E4 in cells was confirmed at 24, 48, and 72 h. At 72 h after exposure, E4 NP significantly decreased pTyr-IRS, yet increased pAkt protein abundance, membrane translocation of GLUT4, and glucose uptake, compared with cells treated with void NP. Free E4 (without NP) had no effect.
Conclusions: NP-mediated delivery of E4 promotes glucose uptake in preadipocytes. The next step is to test the efficacy of this clinically compatible delivery approach in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41366-020-0526-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!