Enhanced oil recovery (EOR) plays a significant role in improving oil production. Tertiary EOR, including surfactant flooding, can potentially mobilize residual oil after water flooding. Prior to the field deployment, the surfactant performance must be evaluated using site-specific crude oil at reservoir conditions. Core flood experiments are common practice to evaluate surfactants for oil displacement efficiency using core samples. Core flood experiments, however, are expensive and time-consuming and do not allow for pore scale observations of fluid-fluid interactions. This work introduces the framework to evaluate the performance of EOR surfactants via a Reservoir-on-a-Chip approach, which uses microfluidic devices to mimic the oil reservoir. A unique feature of this study is the use of chemically modified micromodels such that the pore surfaces are representative of carbonate reservoir rock. To represent calcium carbonate reservoir pores, the inner channels of glass microfluidic devices were coated with thin layers of calcium carbonate nanocrystals and the surface was modified to exhibit oil-wet conditions through a crude oil aging process. During surfactant screening, oil and water phases were imaged by fluorescence microscopy to reveal the micro to macro scale mechanisms controlling surfactant-assisted oil recovery. The role of the interfacial tension (IFT) and wettability in the microfluidic device was simulated using a phase-field model and compared to laboratory results. We demonstrated the effect of low IFT at the oil-water interface and wettability alteration on surfactant-enhanced oil displacement efficiency; thus providing a time-efficient and low-cost strategy for quantitative and qualitative assessment. In addition, this framework is an effective method for pre-screening EOR surfactants for use in carbonate reservoirs prior to further core and field scale testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972785 | PMC |
http://dx.doi.org/10.1038/s41598-020-57485-x | DOI Listing |
Sci Rep
January 2025
School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.
N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service U.S. Department of Agriculture Wyndmoor Pennsylvania USA.
Recovery of the butterfat in waste ice cream may be an opportunity to mitigate food and economic loss. Previous efforts to recover such fat have succeeded in producing a fat-enriched fraction but have not succeeded in demulsifying the fat. In the present study, a method involving a sequence of emulsion-breaking steps is shown to be effective for releasing a majority of the fat from waste ice cream as free, unemulsified oil.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences Langfang Hebei 065007 China.
Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China. Electronic address:
In this study, we innovatively prepared a multifunctional lignin crosslinked polyacrylamide (L-cPAM) hydrogel by a sequential two-step strategy of crosslinking of lignin and crosslinked polyacrylamide (cPAM) followed by the polymerization of cPAM. The hydrogen bonding and crosslinking between the molecular chains of lignin and PAM established a rigid and porous network structure, which provided the L-cPAM hydrogel with excellent mechanical strength, thermal stability, and salinity resistance. A series of lignin dosages (0 to 30 %) were investigated during the crosslinking of lignin and PAM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!