Background and Purpose- In acute spontaneous intracerebral hemorrhage, multiple hematoma expansion scores have been proposed for use in clinical trial environments. We performed a systematic scoping review to identify all existing hematoma expansion scores and describe their development, validation, and relative performance. Methods- Two reviewers searched MEDLINE, PUBMED, EMBASE, and CENTRAL (Cochrane Central Register of Controlled Trials) for studies that derived or validated a hematoma expansion prediction score in adults presenting with spontaneous intracerebral hemorrhage. A descriptive analysis of the extracted data was performed, focusing on score development techniques and predictive capabilities. Results- Of the 14 434 records retrieved, 15 studies met inclusion criteria and 10 prediction scores were identified. Validation analysis using independent samples was performed in 9 studies on 5 scores. All derivation studies reported high performance with C statistics ranging from 0.72 to 0.93. In validation, the C-statistic range was broader with studies reporting 0.62 to 0.77. For every score, the risk of expansion increased with each point increase, although patients with high scores were rare. Conclusions- At present, 10 hematoma expansion scores have been developed, of which 5 have been externally validated. Real-world performance in validation studies was lower than performance in derivation studies. Data from the current literature are insufficient to support a meaningful meta-analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.119.028574DOI Listing

Publication Analysis

Top Keywords

hematoma expansion
20
expansion scores
16
spontaneous intracerebral
12
intracerebral hemorrhage
12
acute spontaneous
8
systematic scoping
8
scoping review
8
derivation studies
8
scores
7
studies
7

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.

View Article and Find Full Text PDF

Bispecific antibodies (BsAb) have emerged as a leading treatment modality in patients suffering from B-cell non-Hodgkin's lymphoma (B-NHL). However, treatment failure is common and may potentially be attributed to pre-existing or emerging T-cell exhaustion. CD39 catalyzes-together with CD73-the hydrolysis of immunogenic ATP into immunosuppressive adenosine and thus actively promotes an immunosuppressive micromilieu.

View Article and Find Full Text PDF

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Histopathology of the small airways: Similarities and differences between ageing and COPD.

Pulmonology

December 2025

Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.

Age-related lung function decline is associated with small airway closure and gas trapping. The mechanisms which cause these changes are not fully understood. It has been suggested that COPD is caused by accelerated ageing.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!