Materials with short-wave infrared (SWIR) emission are promising contrast agents for in vivo animal imaging, providing high-contrast and high-resolution images of blood vessels in deep tissues. However, SWIR emitters have not been developed as molecular labels for microscopy applications in the life sciences, which require optimized probes that are bright, stable, and small. Here, we design and synthesize semiconductor quantum dots (QDs) with SWIR emission based on HgCdSe alloy cores red shifted to the SWIR by epitaxial deposition of thin HgCdS shells with a small band gap. By tuning alloy composition alone, the emission can be shifted across the visible-to-SWIR (VIR) spectra while maintaining a small and equal size, allowing direct comparisons of molecular labeling performance across a broad range of wavelength. After coating with click-functional multidentate polymers, the VIR-QD spectral series has high quantum yield in the SWIR (14-33%), compact size (13 nm hydrodynamic diameter), and long-term stability in aqueous media during continuous excitation. We show that these properties enable diverse applications of SWIR molecular probes for fluorescence microscopy using conjugates of antibodies, growth factors, and nucleic acids. A broadly useful outcome is a 10-55-fold enhancement of the signal-to-background ratio at both the single-molecule level and the ensemble level in the SWIR relative to visible wavelengths, primarily due to drastically reduced autofluorescence. We anticipate that VIR-QDs with SWIR emission will enable ultrasensitive molecular imaging of low-copy number analytes in biospecimens with high autofluorescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335634PMC
http://dx.doi.org/10.1021/jacs.9b11567DOI Listing

Publication Analysis

Top Keywords

swir emission
12
short-wave infrared
8
quantum dots
8
molecular probes
8
probes fluorescence
8
fluorescence microscopy
8
swir
8
molecular
5
infrared quantum
4
dots compact
4

Similar Publications

Quantum Chemical Determination of Molecular Dye Candidates for Non-Invasive Bioimaging.

Molecules

December 2024

Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA.

Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT).

View Article and Find Full Text PDF

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55 to 6.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.

View Article and Find Full Text PDF

Shortwave infrared (SWIR)-emitting materials have emerged as superior light sources with increasing demand for potential applications in noninvasive analysis, night vision illumination, and medical diagnosis. For developing next-generation SWIR phosphor-converted light-emitting diodes (pc-LEDs), the scarcity of intense blue-light-pumped broadband SWIR luminescent materials and poor thermal stability of current Ni-activated phosphors are the ongoing challenges. Here, a blue-light-excitable (440 nm) YAlGaO:Cr,Ni phosphor with ultrawide SWIR emission centered at ∼1430 nm (FWHM ∼264 nm) is reported.

View Article and Find Full Text PDF

Infrared (IR) emitters have drawn considerable attention for applications in deep-tissue imaging, optical communication, and thermal sensing. While III-V and II-VI semiconductors are traditionally used in these emitters, their reliance on complex epitaxial growth to overcome lattice mismatch and thermal expansion challenges leads to intricate device structures and limits their integrability. In contrast, 2D materials provide a more flexible solution, offering diverse optical bandgaps and the ability to be vertically restacked in arbitrary crystal orientations to form complex van der Waals (vdW) heterostructures, which can be further integrated onto diverse device platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!