Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase.

Chempluschem

Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.

Published: October 2016

The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH) } (dmgH =dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respect to the cobaloxime alone or to analogous sperm whale myoglobin adducts. This study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201600218DOI Listing

Publication Analysis

Top Keywords

artificial hydrogenases
8
heme oxygenase
8
hydrogenases based
4
based cobaloximes
4
cobaloximes heme
4
oxygenase insertion
4
insertion cobaloxime
4
cobaloxime catalysts
4
catalysts heme-binding
4
heme-binding pocket
4

Similar Publications

Developing photoactivated artificial enzymes for sustainable fuel production.

Curr Opin Chem Biol

December 2024

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. Electronic address:

Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen.

View Article and Find Full Text PDF

Light-driven hydrogen evolution is a promising means of sustainable energy production to meet global energy demand. This study investigates the photocatalytic hydrogen evolution activity of nickel-substituted rubredoxin (NiRd), an artificial hydrogenase mimic, covalently attached to a ruthenium phototrigger (RuNiRd). By systematically modifying the para-substituents on Ru(II) polypyridyl complexes, we sought to optimize the intramolecular electron transfer processes within the RuNiRd system.

View Article and Find Full Text PDF

A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis.

Angew Chem Int Ed Engl

November 2024

Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany.

Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!