A series of thiocyanate-free bis(tridentate) ruthenium(II) complexes incorporating 1,2,3-triazole-derived NNN-, NCN-, and CNC-coordinating ligands has been employed for sensitizing ZnO photoanodes for dye-sensitized solar cells (DSSCs). Additionally, the first use of the TEMPO /TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) redox mediator as a surrogate for the I /I redox couple in ZnO nanostructured DSSCs is presented. Compared with I /I -based electrolytes, shorter charge lifetimes and diffusion lengths were determined for the TEMPO /TEMPO-based electrolyte. Nonetheless, similar power conversion efficiencies (PCEs) were achieved with both electrolytes for the RuNCN and RuCNC complexes, whereas higher PCEs are enabled by the iodine-free electrolyte in case of RuNNN. The combination of the molecular sensitizers and the TEMPO-based electrolyte exhibits relatively high external quantum efficiency (EQE) and promising PCEs, ranging from 4.48 to 1.47 %, which are-in part-comparable to that of ZnO-DSSCs with the benchmark N749 black dye. The TEMPO-based electrolyte also exhibits less absorption compared with its I /I counterpart, a favorable feature for enhancing the light harvesting ability of the photoanode. Furthermore, the results show the effect of the dye-sensitization procedure on the PCE values: The use of ethanol as the solvent compared with methanol increases the DSSC's efficiency, which is attributed to improved chemisorption of the sensitizer onto the ZnO surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201600377 | DOI Listing |
J Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.
View Article and Find Full Text PDFNanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
Materials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland.
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!