Portable spectroscopic instruments are an interesting alternative for in-field and on-line measurements. However, the practical implementation of visible-near infrared (VIS-NIR) portable sensors in the forest sector is challenging due to operation in harsh environmental conditions and natural variability of wood itself. The objective of this work was to use spectroscopic methods as an alternative to visual grading of wood quality. Three portable spectrometers covering visible and near infrared range were used for the detection of selected naturally occurring wood defects, such as knots, decay, resin pockets and reaction wood. Measurements were performed on wooden discs collected during the harvesting process, without any conditioning or sample preparation. Two prototype instruments were developed by integrating commercially available micro-electro-mechanical systems with for-purpose selected lenses and light source. The prototype modules of spectrometers were driven by an Arduino controller. Data were transferred to the PC by USB serial port. Performance of all tested instruments was confronted by two discriminant methods. The best performing was the microNIR instrument, even though the performance of custom prototypes was also satisfactory. This work was an essential part of practical implementation of VIS-NIR spectroscopy for automatic grading of logs directly in the forest. Prototype low-cost spectrometers described here formed the basis for development of a prototype hyperspectral imaging solution tested during harvesting of trees within the frame of a practical demonstration in mountain forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014491 | PMC |
http://dx.doi.org/10.3390/s20020545 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!