Several insect innate immune mechanisms are activated in response to infection by entomopathogenic nematodes (EPNs). In this review, we focus on the coagulation of hemolymph, which acts to stop bleeding after injury and prevent access of pathogens to the body cavity. After providing a general overview of invertebrate coagulation systems, we discuss recent findings in which demonstrate that clots protect against EPN infections. Detailed analysis at the cellular level provided insight into the kinetics of the secretion of coagulation factors, including non-classical modes of secretion. Roughly, clot formation can be divided into a primary phase in which crosslinking of clot components depends on the activity of transglutaminase and a secondary, phenoloxidase (PO)-dependent phase, characterized by further hardening and melanization of the clot matrix. These two phases appear to play distinct roles in two commonly used EPN infection models, namely and . Finally, we discuss the implications of the coevolution between parasites such as EPNs and their hosts for the dynamics of coagulation factor evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023112 | PMC |
http://dx.doi.org/10.3390/insects11010062 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFMethodsX
June 2025
Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
The entomopathogenic nematodes (EPNs) Steinernema carpocapsae and Steinernema hermaphroditum can efficiently infect the fruit fly, Drosophila melanogaster. The EPN infective juvenile (IJ) stage is the free-living and non-feeding stage that seeks out suitable insects to infect. While previous studies have described successful infection of melanogaster larvae with a standard amount of 100 IJs, the pathogenicity of a single IJ nematode towards insects remains poorly understood.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Laboratory of Diagnosis and Integrated Management of Plant Bio-Aggressors. University of Parakou, BP123 Parakou, Borgou, Benin.
Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.
View Article and Find Full Text PDFInsects
December 2024
Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ 08901, USA.
White grubs possess natural defense mechanisms against entomopathogenic nematodes (EPNs). Hence, EPN isolates that naturally infect white grubs tend to be among the most effective biological control agents of white grubs. We tested the virulence of four EPN isolates recently isolated from infected white grubs in turfgrass areas in central New Jersey, USA against third-instar larvae of , , and , which are pests of turfgrass and ornamental plants in the northeastern USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!