Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we prepared a novel sorbent derived from precipitating copper ion onto the surfaces of activated carbon (Cu-AC). The sorbents were comprehensively characterized by Brunauer-Emmett-Teller (BET), zeta potential analysis, SEM, XRD, and FTIR. Batch experiments were conducted to evaluate selenate removal by Cu-AC under different conditions. The results showed that Cu was uniformly coated on the AC surface. Copper pretreatment markedly decreased the specific surface area and total pore volume of AC, and changed its surface zeta potential from highly negative to low negative and even positive. The Cu-AC substantially improved selenate adsorption capacity from the 1.36 mg Se/g AC of raw AC to 3.32, 3.56, 4.23, and 4.48 mg Se/g AC after loading of 0.1, 0.5, 1.0, and 5 mmol Cu/g AC, respectively. The results of toxicity leaching test showed AC coated with ≤1.0 mmol Cu/g was acceptable for potential application. Selenate adsorption was significantly inhibited by high ionic strength (>50 mM NaCl) and pH (>10). The electrostatic attraction between positive surface charge of Cu-AC and selenate ions and hydrogen bonding between CuO and HSeO might contribute to selenate sorption. Evidence showed that the selenate adsorption might involve outer-sphere surface complexation. The adsorption data appeared to be better described by Langmuir than Freundlich isotherm. The spent adsorbent could be effectively regenerated by hydroxide for reuse. Only a little decrease of removal efficiency was observed in the second and third run. This study implies that Cu-coated AC is a potential adsorbent for sustainable removal selenate from relative low salinity water/wastewater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013655 | PMC |
http://dx.doi.org/10.3390/ma13020468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!