A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon. | LitMetric

Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon.

Materials (Basel)

College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China.

Published: January 2020

In this study, we prepared a novel sorbent derived from precipitating copper ion onto the surfaces of activated carbon (Cu-AC). The sorbents were comprehensively characterized by Brunauer-Emmett-Teller (BET), zeta potential analysis, SEM, XRD, and FTIR. Batch experiments were conducted to evaluate selenate removal by Cu-AC under different conditions. The results showed that Cu was uniformly coated on the AC surface. Copper pretreatment markedly decreased the specific surface area and total pore volume of AC, and changed its surface zeta potential from highly negative to low negative and even positive. The Cu-AC substantially improved selenate adsorption capacity from the 1.36 mg Se/g AC of raw AC to 3.32, 3.56, 4.23, and 4.48 mg Se/g AC after loading of 0.1, 0.5, 1.0, and 5 mmol Cu/g AC, respectively. The results of toxicity leaching test showed AC coated with ≤1.0 mmol Cu/g was acceptable for potential application. Selenate adsorption was significantly inhibited by high ionic strength (>50 mM NaCl) and pH (>10). The electrostatic attraction between positive surface charge of Cu-AC and selenate ions and hydrogen bonding between CuO and HSeO might contribute to selenate sorption. Evidence showed that the selenate adsorption might involve outer-sphere surface complexation. The adsorption data appeared to be better described by Langmuir than Freundlich isotherm. The spent adsorbent could be effectively regenerated by hydroxide for reuse. Only a little decrease of removal efficiency was observed in the second and third run. This study implies that Cu-coated AC is a potential adsorbent for sustainable removal selenate from relative low salinity water/wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013655PMC
http://dx.doi.org/10.3390/ma13020468DOI Listing

Publication Analysis

Top Keywords

selenate adsorption
12
selenate removal
8
activated carbon
8
zeta potential
8
mmol cu/g
8
selenate
7
surface
5
enhanced selenate
4
removal
4
removal aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!