Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aiming at the requirement of rapid recognition of the wearer's gait stage in the process of intelligent hybrid control of an exoskeleton, this paper studies the human body mixed motion pattern recognition technology based on multi-source feature parameters. We obtain information on human lower extremity acceleration and plantar analyze the relationship between these parameters and gait cycle studying the motion state recognition method based on feature evaluation and neural network. Based on the actual requirements of exoskeleton per use, 15 common gait patterns were determined. Using this, the studies were carried out on the time domain, frequency domain, and energy feature extraction of multi-source lower extremity motion information. The distance-based feature screening method was used to extract the optimal features. Finally, based on the multi-layer BP (back propagation) neural network, a nonlinear mapping model between feature quantity and motion state was established. The experimental results showed that the recognition accuracy in single motion mode can reach up to 98.28%, while the recognition accuracy of the two groups of experiments in mixed motion mode was found to be 92.7% and 97.4%, respectively. The feasibility and effectiveness of the model were verified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014504 | PMC |
http://dx.doi.org/10.3390/s20020537 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!