Browning of white adipocytes has been proposed as a powerful strategy to overcome metabolic complications, since brown adipocytes are more catabolic, expending energy as a heat form. However, the biological pathways involved in the browning process are still unclear. Aquaglyceroporins are a sub-class of aquaporin water channels that also permeate glycerol and are involved in body energy homeostasis. In the adipose tissue, aquaporin-7 (AQP7) is the most representative isoform, being crucial for white adipocyte fully differentiation and glycerol metabolism. The altered expression of AQP7 is involved in the onset of obesity and metabolic disorders. Herein, we investigated if aquaglyceroporins are implicated in beige adipocyte differentiation, similar to white cells. Thus, we optimized a protocol of murine 3T3-L1 preadipocytes browning that displayed increased beige and decreased white adipose tissue features at both gene and protein levels and evaluated aquaporin expression patterns along the differentiation process together with cellular lipid content. Our results revealed that AQP7 and aquaporin-9 (AQP9) expression was downregulated throughout beige adipocyte differentiation compared to white differentiation, which may be related to the beige physiological role of heat production from oxidative metabolism, contrasting with the anabolic/catabolic lipid metabolism requiring glycerol gateways occurring in white adipose cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014209 | PMC |
http://dx.doi.org/10.3390/ijms21020610 | DOI Listing |
FASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China. Electronic address:
Stimulator of interferon response cGAMP interactor 1 (STING1), as an innate immune adaptor protein that mediates DNA sensing, has attracted tremendous biomedical interest. However, several recent researches have revealed the key role of STING1 in regulating the metabolic pathway. Here, we investigated its role in adipocyte differentiation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:
Extracellular matrix (ECM) and integrins are important biological macromolecules. ECM especially collagen IV (COLIV) deposition modulates the integrin-FAK signaling pathway involved in adipogenesis and is strongly associated with insulin resistance. Type 2 diabetes mellitus (T2DM) mice were given swertiamarin (STM) by intragastric administration.
View Article and Find Full Text PDFLife Sci
January 2025
Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France. Electronic address:
Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.
View Article and Find Full Text PDFSTAR Protoc
January 2025
School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
White adipose tissue (WAT) beiging holds significant therapeutic potential for combating obesity. Here, we present a protocol for inducing beige WAT in mice using both cold exposure and CL316,243 treatment. We describe steps for intraperitoneal injection, and subcutaneous WAT (sWAT) isolation, dissection, and fixation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!