Poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) blends were compatibilized by reactive blending and by copolymers formed during reaction in the solution. The reactive blending of PCL/PLA was performed using di-(2-tert-butyl-peroxyisopropyl)benzene (BIB) or dicumyl peroxide (DCP) as radical initiator. PCL--PLA copolymers were prepared using 1.0 wt. % of DCP or BIB via reaction in solution, which was investigated through a Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) in order to better understand the occurring mechanisms. The effect of different additions such as PCL--PLA copolymers, DCP, or BIB on the properties of PCL/PLA blends was studied. The unmodified PCL/PLA blends showed a sea-island morphology typical of incompatible blends, where PLA droplets were dispersed in the PCL matrix. Application of organic peroxides improved miscibility between PCL and PLA phases. A similar effect was observed for PCL/PLA blend compatibilized by PCL--PLA copolymer, where BIB was used as initiator. However, in case of application of the peroxides, the PCL/PLA blends were cross-linked, and it has been confirmed by the gel fraction and melt flow index measurements. The thermal and mechanical properties of the blends were also investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and tensile strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023668 | PMC |
http://dx.doi.org/10.3390/polym12010228 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!