Increase of extraintestinal pathogenic (ExPEC) showing resistance to beta-lactams is a major public health concern. This study was conducted as a first molecular epidemiological study on ExPEC in Cuba, regarding prevalence of extended-spectrum beta-lactamases (ESBLs) and carbapenemase genes. A total of 306 ExPEC isolates collected in medical institutions in 16 regions in Cuba (2014-2018) were analyzed for their genotypes and presence of genes encoding ESBL, carbapenemase, plasmid-mediated quinolone resistance (PMQR) determinants by PCR and sequencing. The most common phylogenetic group of ExPEC was B2 (49%), followed by D (23%), A (21%), and B1 (7%). Among ESBL genes detected, was the most common and detected in 61% of ExPEC, with being dominant and distributed to all the phylogenetic groups. NDM-1 type carbapenemase gene was identified in two isolates of phylogenetic group B1-ST448. Phylogenetic group B2 ExPEC belonged to mostly ST131 (or its single-locus variant) with O25b allele, harboring , and included an isolate of emerging type ST1193. was the most prevalent PMQR gene (40.5%), being present in 54.5% of CTX-M-positive isolates. These results indicated high prevalence of CTX-M genes and the emergence of NDM-1 gene among recent ExPEC in Cuba, depicting an alarming situation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168674 | PMC |
http://dx.doi.org/10.3390/pathogens9010065 | DOI Listing |
Exp Appl Acarol
January 2025
Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.
Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.
View Article and Find Full Text PDFCurr Genet
January 2025
Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan.
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests.
View Article and Find Full Text PDFNat Microbiol
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
Mammarenaviruses (genus Mammarenavirus, family Arenaviridae) are rodent-borne zoonotic viruses consisting of 52 viral species, including ten that are pathogenic to humans. Currently, only two endemic mammarenavirus species are known in Europe: the human pathogenic Mammarenavirus choriomeningitidis (LCMV) and the recently discovered hedgehog-origin Mammarenavirus mecsekense (MEMV). In this study, 59 faecal specimens from Northern white-breasted hedgehogs (Erinaceus roumanicus) from different geographic regions in Hungary were investigated for mammarenavirus presence and complete genome characterization using newly designed screening primers by RT-semi-nested PCR and sequencing methods.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
Despite the advances in paleogenomics, red cell blood group systems in ancient human populations remain scarcely known. Pioneer attempts showed that Neandertal and Denisova, two archaic hominid populations inhabiting Eurasia, expressed blood groups currently found in sub-Saharans and a rare "rhesus", part of which is found in Oceanians. Herein we fully pictured the blood group genetic diversity of 22 Homo sapiens and 14 Neandertals from Eurasia living between 120,000 and 20,000 years before present (yBP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!