The existing road surface marking with poor visibility at night results in traffic safety hazards in insufficient lighting roads. This study aims to prepare the dedicated aluminate-based persistent phosphors considering the integrated pavement environment, as the first step to achieve the durable luminescent road surface marking. SrAlO: Eu, Dy persistent phosphors coated with silica-polymer hybrid shell were prepared by chemical precipitation and sol-gel method to improve moisture resistance and organic compatibility. The optimum silane coupling agent type and dosage, the surfactant dosage, the optimum sodium silicate dosage, and the coating reaction time in silica shell and polymer shell coating were studied based on the moisture resistance test. The silica-polymer hybrid shell coating balances the organic compatibility and thermal stability as compared to the silica or polymer shell coating in the oil absorption test and thermogravimetric analysis. Ex-Em Spectra, XRD, and SEM method were used to characterize the persistent phosphors, indicating the preparation does not destroy the persistent phosphors. The outstanding durable properties of SrAlO: Eu, Dy persistent phosphors coated with silica-polymer hybrid shell as shown in this research is crucial for its potential application in waterborne luminescent coatings of road surface marking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013699PMC
http://dx.doi.org/10.3390/ma13020426DOI Listing

Publication Analysis

Top Keywords

persistent phosphors
24
silica-polymer hybrid
16
hybrid shell
16
moisture resistance
12
organic compatibility
12
sralo persistent
12
phosphors coated
12
coated silica-polymer
12
road surface
12
surface marking
12

Similar Publications

Technological advancements have intensified the demand for effective counterfeiting protection. This work presents multi-level security features in a (Ca,Zn)TiO:Pr,Er phosphor. A dual doping strategy synergistically results in dynamically changing luminescence emission.

View Article and Find Full Text PDF

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Novel non-thermoluminescent CaSO:Dy dosimeters.

Appl Radiat Isot

November 2024

Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190, Mexico. Electronic address:

The non-thermoluminescence afterglow-based dosimetry performance of self-agglomerating pellet-shaped CaSO:Dy phosphors synthesized through a low-cost, environmentally friendly method is first reported. Thermoluminescence (TL) and afterglow (AG) were analyzed in samples exposed to beta particle irradiation in the dose range from 0.06 to 8.

View Article and Find Full Text PDF

Narrow band green emitting phosphors have gained widespread attention due to their application in white light emitting diode (wLED) backlight displays. Commercial backlight displays have a broad band green phosphor which limits their performance. In this work, bright, narrow and thermally stable green emitting MgGaO:Mn (MGO-Mn) has been synthesized.

View Article and Find Full Text PDF

Optically active persistent luminescent materials are highly promising for anticounterfeiting applications due to their distinct luminescent features and the ability to display unique optical polarization properties. Despite significant progress in the development of circularly polarized persistent luminescence (CPPL) materials, the fabrication of upconverted circularly polarized persistent luminescence (UC-CPPL) materials remains a considerable challenge. In this study, we present an efficient strategy to construct UC-CPPL materials by embedding upconversion nanoparticles (UCNPs) and phosphors into chiral nematic liquid crystals (N*LC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!