A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing. | LitMetric

Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing.

Materials (Basel)

Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany.

Published: January 2020

We report on an experimental study and statistical optimization of the surface roughness using design of experiments and the Taguchi method for parts made of 1.2709 maraging steel. We employ a hybrid additive manufacturing approach that combines additive manufacturing by selective laser melting with subtractive manufacturing using milling in an automated process within a single machine. Input parameters such as laser power, scan speed, and hatching distance have been varied in order to improve surface quality of unmachined surfaces. Cutting speed, feed per tooth, and radial depth of cut have been varied to optimize surface roughness of the milled surfaces. The surfaces of the samples were characterized using 3D profilometry. Scan speed was determined as the most important parameter for non-machined surfaces; radial depth of cut was found to be the most significant parameter for milled surfaces. Areal surface roughness S a could be reduced by up to 40% for unmachined samples and by 23% for milled samples as compared to the prior state of the art.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013431PMC
http://dx.doi.org/10.3390/ma13020418DOI Listing

Publication Analysis

Top Keywords

surface roughness
16
additive manufacturing
12
areal surface
8
maraging steel
8
hybrid additive
8
scan speed
8
radial depth
8
depth cut
8
milled surfaces
8
surfaces
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!