Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The class of strongly pseudoadditive (SPA) entropies, which can be represented as an increasing continuous transformation of Shannon and Rényi entropies, have intensively been studied in previous decades. Although their mathematical structure has thoroughly been explored and established by generalized Shannon-Khinchin axioms, the analysis of their thermostatistical properties have mostly been limited to special cases which belong to two parameter Sharma-Mittal entropy class, such as Tsallis, Renyi and Gaussian entropies. In this paper we present a general analysis of the strongly pseudoadditive entropies thermostatistics by taking into account both linear and escort constraints on internal energy. We develop two types of dualities between the thermostatistics formalisms. By the first one, the formalism of Rényi entropy is transformed in the formalism of SPA entropy under general energy constraint and, by the second one, the generalized thermostatistics which corresponds to the linear constraint is transformed into the one which corresponds to the escort constraint. Thus, we establish the equivalence between four different thermostatistics formalisms based on Rényi and SPA entropies coupled with linear and escort constraints and we provide the transformation formulas. In this way we obtain a general framework which is applicable to the wide class of entropies and constraints previously discussed in the literature. As an example, we rederive maximum entropy distributions for Sharma-Mittal entropy and we establish new relationships between the corresponding thermodynamic potentials. We obtain, as special cases, previously developed expressions for maximum entropy distributions and thermodynamic quantities for Tsallis, Rényi, and Gaussian entropies. In addition, the results are applied for derivation of thermostatistical relationships for supraextensive entropy, which has not previously been considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.062135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!