We study the synchronization and stability of power grids within the Kuramoto phase oscillator model with inertia with a bimodal natural frequency distribution representing the generators and the loads. The Kuramoto model describes the dynamics of the ac voltage phase and allows for a comprehensive understanding of fundamental network properties capturing the essential dynamical features of a power grid on coarse scales. We identify critical nodes through solitary frequency deviations and Lyapunov vectors corresponding to unstable Lyapunov exponents. To cure dangerous deviations from synchronization we propose time-delayed feedback control, which is an efficient control concept in nonlinear dynamic systems. Different control strategies are tested and compared with respect to the minimum number of controlled nodes required to achieve synchronization and Lyapunov stability. As a proof of principle, this fast-acting control method is demonstrated for different networks (the German and the Italian power transmission grid), operating points, configurations, and models. In particular, an extended version of the Kuramoto model with inertia is considered that includes the voltage dynamics, thus taking into account the interplay of amplitude and phase typical of the electrodynamical behavior of a machine.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.062306DOI Listing

Publication Analysis

Top Keywords

power grid
8
synchronization stability
8
time-delayed feedback
8
feedback control
8
model inertia
8
kuramoto model
8
control
5
enhancing power
4
synchronization
4
grid synchronization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!