We prove that the Euler-Bernoulli elastic beam theory can be reliably used to describe the dynamics of an atomic force microscope cantilever during the far from equilibrium snap-to-contact event. In conventional atomic force microscope operation, force-separation curves are obtained by post-processing voltage versus time traces produced by measuring one point on the cantilever close to the hanging end. In this article, we assess the validity of the Euler-Bernoulli equation during the snap-to-contact event. The assessment is based on a direct comparison between experiment and theory. The experiment uses Doppler vibrometry to measure displacement versus time for many points along the long axis of the cantilever. The theoretical algorithm is based on a solution of the Euler-Bernoulli equation to obtain the full shape of the cantilever as a function of time. The algorithm uses as boundary conditions, experimentally obtained information only near the hanging end of the cantilever. The solution is obtained in a manner that takes into account non-equilibrium motion. Within experimental error, the theory agrees with experiment indicating that the Euler-Bernoulli theory is appropriate to predict the cantilever kinematics during snap-to-contact. Since forces on the tip can be obtained from the instantaneous shape of the cantilever, this work should allow for computation of tip-sample forces during the snap-to-contact event from a conventional force-distance measured input.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab6dffDOI Listing

Publication Analysis

Top Keywords

atomic force
12
force microscope
12
snap-to-contact event
12
euler-bernoulli theory
8
cantilever
8
microscope cantilever
8
event conventional
8
versus time
8
euler-bernoulli equation
8
shape cantilever
8

Similar Publications

Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Temperature-Dependent Formation of Carbon Nanodomains in Silicon Oxycarbide Glass-A Reactive Force Field MD Study.

J Phys Chem C Nanomater Interfaces

January 2025

Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.

Novel anode materials for lithium-ion batteries (LIBs) are constantly being explored to further improve battery performance. In this work, ReaxFF molecular dynamics (MD) simulations are performed to model the early stages in the synthesis of nanostructured silicon carbide (SiC), which is one such promising material. The focus lies on its precursor, silicon oxycarbide glass of composition (SiOC) (17 mol% Si, 28 mol% O, and 54 mol% C), in the following referred to as SiOC.

View Article and Find Full Text PDF

Comprehensive characterization of tobacco-induced changes in enamel surface topography.

J Oral Biol Craniofac Res

December 2024

Department of Oral Biology and Oral Pathology, Saveetha Dental College and Hopsitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.

Introduction: Enamel translucency, essential for the aesthetic appeal of teeth, is primarily determined by its thickness, quality, and refractive index. Several factors, including age, genetics, diet, oral hygiene practices, fluoride exposure, and acidic challenges, can influence enamel translucency. Tobacco use, in particular, leads to significant alterations in enamel appearance by penetrating its micropores, causing yellowing and browning.

View Article and Find Full Text PDF

Controlled ligation and elongation of uniformly truncated amyloid nanofibrils.

Nanoscale

January 2025

Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.

This study investigates the production and inter-fibril interactions of uniformly truncated amyloid nanofibrils. By varying extrusion cycles (0, 50, and 100) and using carbonate filters with 100 nm and 200 nm pore sizes, precise fibril length control was achieved. Atomic force microscopy (AFM) confirmed that the mean length of the truncated fibrils corresponded to the respective pore size as extrusion cycles increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!