Heavy metals contamination of soil especially with cadmium (Cd) is a serious environmental concern in the current industrial era. Biochar serves as an excellent ameliorating agent depending upon its properties and application rates. In the pot scale study, effect of acid treated (AWSB) and untreated wheat straw biochar (WSB) was studied on physiology, grain yield, Cd accumulation, and tolerance of quinoa with possible health risks. Different levels of Cd (0, 25, 50 and 75 mg kg), AWSB and WSB (1% and 2% (w/w)) were applied in soil. Accumulation of Cd in control plant tissues led to oxidative stress which was shown in terms of increased lipid peroxidation. While biochar application relieved the oxidative damage as confirmed by the low production of HO and TBARS contents. Application of AWSB improved plant growth, pigment contents and gas exchange attributes by limiting the accumulation of Cd in root, shoot and grain of quinoa. Results revealed a significant improvement in the activity of superoxide (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) with biochar at elevated levels of Cd in soil. Target Hazard Quotient (THQ) remained < 1 in the quinoa grains with WSB and AWSB under Cd stress. These results revealed that AWSB most effectively alleviated Cd toxicity in quinoa thereby decreasing Cd accumulation and regulation of Cd induced oxidative stress triggered by the antioxidant enzymatic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110218 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ahmadu Bello University Zaria, Zaria, Kaduna, Nigeria.
Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ICMR - National Institute of Nutrition, Hyderabad, Telangana, India.
Background: Traditionally associated with recreational and spiritual uses, psychedelics have gained attention in psychotherapy for their therapeutic potential. Functioning as potent 5-hydroxytryptamine (5HT) agonists, these compounds have demonstrated the ability to enhance neural plasticity by activating serotoninergic and glutamatergic systems. Despite these recognized effects, their role in treating neurodegenerative disorders, particularly dementia, remains relatively unexplored.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Olabisi Onabanjo University, Sagamu, Ogun, Nigeria.
Background: Alzheimer's disease is a neurodegenerative disease associated with the accumulation of amyloid beta proteins to form plaques and the aggregation of hyperphosphorylated tau to form neurofibrillary tangles. Human fibroblast (SH-SY5Y) cells endogenously express Tau, and the expression is further amplified upon differentiation into neuronal cells, making it a cell model of Alzheimer's disease. Nigella sativa oil (NSO) contains 50% thymoquinone and has been used in the treatment of various nervous system disorders.
View Article and Find Full Text PDFBackground: Reliable treatment approaches for addressing early cognitive impairment and Alzheimer's disease (AD) are currently lacking. Given the multifactorial nature of AD, therapeutic strategies need to focus on disease-specific biochemical pathways. Given the significance of metabolic pathways in cognitive impairment, it is essential to investigate alternative disease modifiers capable of targeting multiple metabolic pathways, such as phytochemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!