https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31962147&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=endocrine+disruptors&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a0ee01a51feaa07861b&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2020.110712 | DOI Listing |
Int J Mol Sci
January 2025
Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.
This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Million Marker Wellness, Inc., Berkeley, CA 94704, USA.
Background: Daily-use products, including personal care products, household products, and dietary supplements, often contain ingredients that raise concerns regarding harmful chemical exposure. Endocrine-disrupting chemicals (EDCs) found in daily-use products are associated with numerous adverse health effects.
Methods: This pilot study explores the relationship between concentrations of EDCs in urine samples and products used 24 h prior to sample collection, and ingredients of concern in those products, in 140 adults of reproductive age in Northern Nevada.
Mol Cell Endocrinol
January 2025
Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil.
The large-scale industrial production characteristic of the last century led to an increase in man-made compounds and mobilization of natural compounds, many of which can accumulate in the environment and organisms due to their bioaccumulation and biomagnification properties. The endocrine system is especially vulnerable to these compounds that are known as endocrine disruptor chemicals (EDCs). Thyroid hormones (THs) are essential for normal development and growth, besides being the main regulators of basal metabolic rate.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America.
Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!