Inducible T-cell costimulator (ICOS) upon binding to its ligand (ICOSL) mediates adaptive immunity and antitumor response. Thus, antitumor therapies targeting the ICOS/ICOSL pathway hold great promise for cancer treatment. In this regard, ICOSL triggering by a soluble recombinant form of ICOS (ICOS-Fc) hampered adhesiveness and migration of dendritic, endothelial, and tumor cells in vitro. Furthermore, in vivo treatment with ICOS-Fc previously showed the capability to inhibit lung metastatization of ICOSL B16-F10 melanoma cells when injected intravenously in mice, but it failed to block the growth of established subcutaneous B16-F10 murine tumors. Thus, we asked whether passive targeting of solid tumors with ICOS-Fc-loaded biocompatible and biodegradable nanoparticles (NPs) could instead prove effectiveness in reducing tumor growth. Here, ICOS-Fc was loaded in two types of polymer nanoparticles, i.e. cross-linked β-cyclodextrin nanosponges (CDNS) and poly(lactic-co-glycolic acid) (PLGA) NPs and in vitro characterized. In vivo experiments showed that treatment of C57BL6/J mice with ICOS-Fc loaded into the two nanoformulations inhibits the growth of established subcutaneous B16-F10 tumors. This anticancer activity appears to involve both anti-angiogenic and immunoregulatory effects, as shown by decreased tumor vascularization and downmodulation of IL-10 and Foxp3, two markers of regulatory T cells (Tregs). Overall, the substantial in vivo anticancer activity of ICOS-Fc-loaded CDNS and PLGA NPs against different components of the tumor microenvironment makes these nanoformulations attractive candidates for future combination cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2020.01.030 | DOI Listing |
Nanomaterials (Basel)
November 2022
Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy.
High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc.
View Article and Find Full Text PDFBiomedicines
December 2021
Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy.
Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the opposite, ICOS/ICOSL interaction usually sustains an antitumor response.
View Article and Find Full Text PDFJ Control Release
April 2020
Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy.
Inducible T-cell costimulator (ICOS) upon binding to its ligand (ICOSL) mediates adaptive immunity and antitumor response. Thus, antitumor therapies targeting the ICOS/ICOSL pathway hold great promise for cancer treatment. In this regard, ICOSL triggering by a soluble recombinant form of ICOS (ICOS-Fc) hampered adhesiveness and migration of dendritic, endothelial, and tumor cells in vitro.
View Article and Find Full Text PDFJ Immunol
February 2013
Department of Medicine and Experimental Oncology, University of Torino, 10126 Torino, Italy.
B7h, expressed by several cell types, binds ICOS expressed by activated T cells. We have previously shown that B7h triggering by ICOS-Fc inhibits human endothelial cell adhesiveness. This work investigated the effect of ICOS-Fc on human monocyte-derived dendritic cells (DCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!