Two peptide-derived low-molecular-weight gelators bearing different capping groups, 9-fluorenylmethyloxycarbonyl (Fmoc) and phenothiazine, were synthesized and their gel networks were characterized. The variation of the N-terminal capping group affects the viability of these hydrogels as a three-dimensional cell culture for multicellular tumor spheroids. These results indicate that the phenothiazine capping group is a more biocompatible alternative to the widely used Fmoc moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201600464DOI Listing

Publication Analysis

Top Keywords

capping group
12
three-dimensional cell
8
cell culture
8
tumor spheroids
8
choice capping
4
group tripeptide
4
tripeptide hydrogels
4
hydrogels influences
4
influences viability
4
viability three-dimensional
4

Similar Publications

Evaluation of Biodentine® and Calcium Hydroxide in the Formation of Dentin Bridge in Deep Carious Lesions.

West Afr J Med

September 2024

.Department of Preventive Dentistry, Lagos State University, College of Medicine, Faculty of Dentistry, Ikeja, Lagos, PMB 21266, Nigeria.

Background: Indirect pulp capping is the main treatment modality for reversible pulpitis.

Objective: To evaluate the efficacy of Biodentine® and Calcium hydroxide in the formation of dentin bridge.

Materials And Methods: A double blinded, randomized clinical control trial involving 50 consenting subjects, aged 16 to 55 years with deep carious vital teeth.

View Article and Find Full Text PDF

Morphological Comparisons of Adult Worker Bees Developed in Chinese and Italian Honey Bee Combs.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

The size of comb cells is a key factor influencing the body size of honey bee workers. Comb cells and the body size of Chinese honey bee workers are smaller than those of Italian honey bee workers. To increase the size of Chinese honey bee workers, this study used newly built combs from Chinese honey bee colonies (control group) and Italian honey bee colonies (treatment group).

View Article and Find Full Text PDF

ANTIMICROBIAL ACTION OF A MODIFIED UNIVERSAL ADHESIVE: AN IN VITRO STUDY.

Georgian Med News

November 2024

2Department of Conservative Dentistry, College of Dentistry, University of Mosul, Iraq.

Background: Resin composites and dental adhesives are widely used to restore carious teeth. A relatively new category of the dental adhesives, the universal adhesives (UAs) is considered user friendly because of its simplicity to use and compatibility with any adhesive strategy. However, the adhesive interface created by these adhesives is highly susceptible to cracking after polymerization which in turn facilitates the initiation of secondary caries.

View Article and Find Full Text PDF

Traditional pulp-capping materials like mineral trioxide aggregate (MTA) offer excellent biocompatibility and sealing, but limitations such as prolonged setting time, low bioactivity, and high costs persist. Metformin, with its potential in craniofacial regeneration, could enhance dentin synthesis by targeting pulp cells. This study aimed to: (1) develop a calcium phosphate cement with chitosan (CPCC) with improved physio-mechanical properties; (2) incorporate metformin (CPCC-Met) to assess release; and (3) evaluate human dental pulp stem cells (hDPSCs) response.

View Article and Find Full Text PDF

Rigid, conjugated molecules are excellent candidates as molecular wires since they can achieve full extension between electrodes while maintaining conjugation. Molecular design can be used to minimize the accessible pi surface and interactions between the bridging wire and the electrode. Polyynes are archetypal molecular wires that feature a rigid molecular framework with a cross-section of a single carbon atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!