Some livestock breeds face the challenge of reduced genetic variation, increased inbreeding depression owing to genetic drift and selection. Hybridization can reverse these processes and increase levels of productivity and adaptation to various environmental stressors. Samples from American Brangus were used to evaluate the indicine/taurine composition through nine generations (~45 years) after the hybridization process was completed. The purpose was to determine how hybridization alters allelic combinations of a breed over time when genetic factors such as selection and drift are operating. Furthermore, we explored genomic regions with deviations from the expected composition from the progenitor breeds and related these regions to traits under selection. The Brangus composition deviated from the theoretical expectation, defined by the breed association, of 62.5% taurine, showing taurine composition to be 70.4 ± 0.6%. Taurine and indicine proportion were not consistent across chromosomes. Furthermore, these non-uniform areas were found to be associated with traits that were probably under selection such as intermuscular fat and average daily gain. Interestingly, the sex chromosomes were predominantly taurine, which could be due to the composite being formed particularly in the final cross that resulted in progeny designated as purebred Brangus. This work demonstrated the process of new breed formation on a genomic level. It suggests that factors like genetic drift, selection and complementarity shift the genetic architecture into a uniquely different population. These findings are important to better understand how hybridization and crossbreeding systems shape the genetic architecture of composite populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065137 | PMC |
http://dx.doi.org/10.1111/age.12907 | DOI Listing |
Int J Biol Macromol
January 2025
Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia. Electronic address:
Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Microbiology of the National Academy of Sciences of Belarus, Acad. Kuprevich str., 2, 220084 Minsk, Belarus.
There is an urgent need to develop effective and sustainable methods to decrease sulfonamide (SA) contamination of soil. Herein, a non-homogeneous system of zero-valent metal-biochar-based composites was proposed and tested for persulfate (PS) activation. This system employed zero-valent iron (Fe) as an electron donor to catalyze the cleavage of the OO bond in PS, thereby generating reactive oxygen species (ROS) that degrade SAs.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.
View Article and Find Full Text PDFChemMedChem
January 2025
Zelinsky Institute of Organic Chemistry RAS: FGBUN Institut organiceskoj himii imeni N D Zelinskogo Rossijskoj akademii nauk, Organic Chemistry, RUSSIAN FEDERATION.
For decades quaternary ammonium compounds (QACs) have served as main component of a top antiseptic and disinfectant compositions. Among them, bis-QACs are the most prominent and effective class of biocides. Although mono-QACs still dominate the antiseptic market, their activity against Gram-negative bacteria is largely inferior to bis-QACs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!