Biphenyl-2,2'-diylbis(10-methyl-9-methyleneacridan)-type electron donor 1, which has two tethered cyclic disulfide units at the 6,6'-positions, was designed and synthesized as the first member of a dynamic redox (dyrex) system that can form molecular layers on a Au(111) electrode. Upon the two-electron (2 e) oxidation of 1, the persistent dicationic dye 2 was generated with the formation of a new C-C bond, which is reversibly cleaved upon 2 e reduction to regenerate 1 (dyrex behavior). Similar dyrex interconversion occurs in the molecular layer of 1 on gold. The chemical identities of 1/Au and electrochemically generated 2 /Au were unambiguously determined by in situ IR spectroscopy in the attenuated total reflection mode. In situ scanning tunneling microscopy (STM) was conducted under electrochemical conditions to examine the surface structure of 1 adsorbed on a Au(111) electrode. Although no long-range-ordered morphology was found in the STM image of 1, an in situ STM study of the potential-induced dyrex reaction of 1 to 2 showed that the grained spots in the image became slightly brighter.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201600649DOI Listing

Publication Analysis

Top Keywords

molecular layer
8
dynamic redox
8
au111 electrode
8
organic molecular
4
layer high
4
high electrochemical
4
electrochemical bistability
4
bistability synthesis
4
synthesis structure
4
structure properties
4

Similar Publications

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase.

Cell Rep

January 2025

Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation.

View Article and Find Full Text PDF

Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.

Results: The feature-based molecular networking (FBMN) analysis showed that T.

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!