Mechanical and Drug Release Properties of Sponges from Cross-linked Cellulose Nanofibers.

Chempluschem

Department of Chemistry, Materials, and Chemical Engineering "G. Natta", and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

Published: June 2017

All-organic porous sponges were obtained throughout the direct and solvent-free (oven 105 °C, time>6 h) crosslinking of TEMPO-oxidized cellulose nanofibers (TOCNF) with 25 kDa branched polyethyleneimine (bPEI) in the presence of different amounts of citric acid (CA) as co-crosslinker. The chemical and mechanical stability of these materials was provided by the formation of amide bonds between the carboxylic moieties of TOCNF and CA with the primary amines of bPEI. The mechanical properties were investigated under static and dynamic loads with both dry and wet samples. The materials had the interesting capability to recover their shape with reduced losses in mechanical resistance, while their Young's modulus progressively increased with the content of CA. In work toward developing possible applications of bPEI-TOCNF sponges in drug delivery, amoxicillin (AM) and ibuprofen (IB) were considered as model drugs. All materials showed very good performance in adsorbing both AM and IB (ca. 200 mg g ) from methanol solution. In particular, an increased adsorption of IB was observed in parallel to the increase of citrate moieties in the samples. Moreover, samples crosslinked in presence of CA showed slower kinetic release in aqueous environments than materials obtained without CA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201700185DOI Listing

Publication Analysis

Top Keywords

cellulose nanofibers
8
mechanical
4
mechanical drug
4
drug release
4
release properties
4
properties sponges
4
sponges cross-linked
4
cross-linked cellulose
4
nanofibers all-organic
4
all-organic porous
4

Similar Publications

This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.

View Article and Find Full Text PDF

Nanocellulose/activated carbon composite aerogel beads with high adsorption capacity for toxins in blood.

Int J Biol Macromol

January 2025

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:

Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.

View Article and Find Full Text PDF

Comparison of Aging Performances and Mechanisms: Super-Durable Fire-Resistant "Xuan Paper" Versus Chinese Traditional Xuan Paper.

Molecules

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!