The design of nanoscale materials has been considered important for enhancing their surface properties for catalysis. Metal oxide nanoparticles have a large number of exposed surface active sites, but they suffer from low reactivity and poor stability resulting from excessive aggregation into less active microscopic structures. Herein, the synthesis of mesoporous Mn O nanoparticle assemblies by polymer-assisted self-assembly is presented and their catalytic activity is demonstrated in the oxidation of various saturated and unsaturated hydrocarbons, including aromatic alkenes and aryl alkanes, in the presence of tert-butyl hydroperoxide as a mild oxidant. It is also shown through comparative studies that the high catalytic activity and stability of these Mn O assemblies arise from the unique three-dimensional open-pore structure, high internal surface area (90 m g ) and uniform mesopores (≈6.6 nm in size).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201600460 | DOI Listing |
Food Res Int
February 2025
Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan. Electronic address:
Solar and indoor withering in the manufacturing process of semi-fermented oolong tea are crucial for aroma formation. While the processes have been established through accumulated experience, the underlying mechanisms remain largely unknown. This study identified pairs of gene and volatile organic compound (VOC) that were significantly correlated and up-regulated during solar withering and the first shaking, including lipoxygenase 8 (LOX8) with 3-hexenyl iso-butyrate, terpene synthase 2 (TPS2) with β-ocimene and linalool, as well as tryptophan synthase β-subunit 2 (TSB2) with indole.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Jiangsu College of Tourism, Yangzhou 225000, P.R. China.
Aims: Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.
Methods: Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield.
Org Lett
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
A novel class of bis-8-aryl-isoquinoline () bis-alkylamine iron complexes, Fe()(OTf) and Fe()(OTf) ( = dipyrrolidinyl or = ,'-dimethylcyclohexyl-diamine), for asymmetric oxidation reactions is reported. The scalable divergent synthesis of 8-aryl-3-formylisoquinolines (), the key intermediates in preparing these ligands, enables precise structural and electronic tuning around the metal center. The enantioselective epoxidation and hydroxy carbonylation of conjugated alkenes, mediated by the Fe() catalyst with HO as the oxidant, demonstrates the potential of these redox Fe[N] catalysts in inducing face selection in oxygen transfer transformations.
View Article and Find Full Text PDFOrg Lett
January 2025
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!