Directional extraction and penetration of phosphorene nanosheets to cell membranes.

Nanoscale

Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA. and Department of Chemistry, Columbia University, New York, New York 10027, USA.

Published: January 2020

Recently, phosphorene, a novel two-dimensional nanomaterial with a puckered surface morphology, was shown to exhibit cytotoxicity, but its underlying molecular mechanisms remain unknown. Herein, using large scale molecular dynamics simulations, we show that phosphorene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes due to the strong dispersion interaction between phosphorene and lipid molecules, which would reduce cell viability. The extracted phospholipid molecules are aligned along the wrinkle direction of the phosphorene nanosheet because of its unique puckered structure. Our results also reveal that small phosphorene nanosheets penetrate into the cell membrane in a specific direction which is determined by the size and surface topography of phosphorene and the thickness of the membrane. These findings might shed light on understanding phosphorene's cytotoxicity and would be helpful for the future potential biomedical applications of phosphorene, such as biosensors and antibacterial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr09577bDOI Listing

Publication Analysis

Top Keywords

phosphorene nanosheets
12
phosphorene
8
cell membranes
8
nanosheets penetrate
8
directional extraction
4
extraction penetration
4
penetration phosphorene
4
cell
4
nanosheets cell
4
membranes phosphorene
4

Similar Publications

Article Synopsis
  • * Black phosphorene (BP) is highlighted for its unique properties, making it a promising material for developing high-performance sensors that can monitor various health-related parameters.
  • * The review covers the methods for preparing BP, its modification for creating bio- and chemo-nanosensors, and addresses challenges in its production and application in areas like agriculture, food safety, and healthcare.
View Article and Find Full Text PDF

We conducted a DFT study of the BN monolayer pairing with the O-containing volatile organic compounds (O-containing VOCs) in exhaled breath, acetone, ethanol, methanol, and formaldehyde. The most stable configuration of O-containing VOCs on the BN sheet is also considered and compared with the adsorbed HO on the desired monolayer. The adsorption energy when both water and O-containing VOC molecules are present shows that the O-containing VOC molecules can be effectively adsorbed on the surface of BN while maintaining stability in the presence of water molecules.

View Article and Find Full Text PDF

Hex-star phosphorene nanosheets as sequencing material for DNA/RNA strands - A first-principles investigation.

J Mol Graph Model

November 2024

School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India. Electronic address:

In this study, we utilised hex-star phosphorene as the main detecting material to identify the nucleobases. Nucleobases, being crucial carriers of hereditary information are identified through specific hydrogen bonding and steric interactions such as adenine pairing with thymine (or) uracil and guanine pairing with cytosine. The stable hex-star phosphorene possesses negative formation energy of -5.

View Article and Find Full Text PDF

Despite their higher capacity compared to common intercalation- and conversion-type anodes, black phosphorus (BP) based anodes suffer from significant capacity fading attributed to the large volume expansion (∼300%) during lithiation. Downsizing BP into nanosheets has been proposed to mitigate this issue, and various methods, particularly mechanical mixing with graphitic materials (BP-C), have been explored to enhance electrochemical performance. However, the understanding of BP-C hybridization is hindered by the lack of studies focusing on fundamental degradation mechanisms within operational battery environments.

View Article and Find Full Text PDF

Ultrasound-electrochemistry assisted liquid-phase co-exfoliation of phosphorene decorated by Au-Ag bimetallic nanoparticles as nanozyme for smartphone-based portable sensing of 4-nitrophenol.

Mikrochim Acta

July 2024

Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, China.

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!