We aimed to identify differential methylation of genes that could illuminate the biological mechanisms of chromium (VI) toxicity in this exposure-control study. DNA methylation was measured in blood samples collected from electroplating workers and controls using a combination of Infinium Methylation450K Chip and targeted-bisulfite sequencing. QuantiGene assay was used to detect the mRNA expression of differentially methylated genes. Inductively coupled plasma-mass spectrometry was used to quantify metals in blood and urine samples. The cytosine-phosphate-guanine sites methylation and gene expression were confirmed in a human lymphoblastoid cell line. A total of 131 differentially methylated cytosine-phosphate-guanine sites were found between exposures and controls. DNA methylation of may serve as a potential biomarker for chromium (VI) exposure.

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2019-0216DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
chromium exposure
8
differentially methylated
8
cytosine-phosphate-guanine sites
8
methylation
5
novel dna
4
methylation biomarkers
4
biomarkers hexavalent
4
hexavalent chromium
4
exposure epigenome-wide
4

Similar Publications

Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.

View Article and Find Full Text PDF

Relationship between apoptosis gene DNA methylation and fetal growth and development.

Gene

January 2025

Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China. Electronic address:

Objective: To investigate the relationship between DNA methylation of cord blood apoptosis genes and low birth weight (LBW).

Methods: A case-control study was conducted on 50 pairs of LBW neonates and normal birth weight. Genome-wide methylation assay was performed using Illumina Human Methylation EPIC microarray to analyze the methylation sites of apoptosis-related genes BCL-2, CASP3, and CASP8.

View Article and Find Full Text PDF

Background: An increasing body of evidence has linked fructose intake to colorectal cancer (CRC). African American (AA) adults consume greater quantities of fructose and are more likely to develop right-side colon cancer than European American (EA) adults.

Objective: We examined the hypothesis that fructose consumption leads to epigenomic and transcriptomic differences associated with CRC tumor biology.

View Article and Find Full Text PDF

Dnmt3a-mediated DNA Methylation Regulates P. gingivalis-suppressed Cementoblast Mineralization Partially Via Mitochondria-dependent Apoptosis Pathway.

Inflammation

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.

Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!