and are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against and . Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells . The results revealed that selected arylquinazolinones derivatives decreased the viability of and significantly ( < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.9b00596DOI Listing

Publication Analysis

Top Keywords

brain-eating amoebae
16
quinazolinones derivatives
8
arylquinazolinones derivatives
8
assays performed
8
silver nanoparticles
8
derivatives
5
aryl quinazolinone
4
quinazolinone derivatives
4
derivatives novel
4
novel therapeutic
4

Similar Publications

The phylum Heterolobosea Page and Blanton, 1985 is a group of eukaryotes that contains heterotrophic flagellates, amoebae, and amoeboflagellates, including the infamous brain-eating amoeba Naegleria fowleri. In this study, we investigate the deep evolutionary history of Heterolobosea by generating and analyzing transcriptome data from 16 diverse isolates and combine this with previously published data in a comprehensive phylogenomic analysis. This dataset has representation of all but one of the major lineages classified here as orders.

View Article and Find Full Text PDF

Amoebae: beyond pathogens- exploring their benefits and future potential.

Front Cell Infect Microbiol

January 2025

Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.

Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate.

View Article and Find Full Text PDF

The free-living amoeba (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates.

View Article and Find Full Text PDF

Naegleria fowleri, is the causative agent of Primary Amoebic Meningoencephalitis (PAM), a lethal acute brain inflammation with high mortality. The virulent and reproductively active trophozoite stage of N. fowleri migrates to central nervous system (CNS) by entering through nasal passage and causes severe neural infection, brain disease and inflammation with high mortality.

View Article and Find Full Text PDF
Article Synopsis
  • A 58-year-old man with meningoencephalitis caused by a brain-eating amoeba died 33 days after symptoms began, highlighting the severity and limited treatment options for this condition.
  • The study introduced ventriculoscopy as a surgical technique to observe and treat the extensive inflammatory response and manage complications like hydrocephalus and intracranial hypertension.
  • Despite the patient's death from brainstem hemorrhage, the case emphasizes the importance of surgical interventions in diagnosing and managing amoebic encephalitis, calling for ongoing research to improve treatment strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!