ConspectusThe electronic dimensionality of a material is defined by the number of spatial degrees of confinement of its electronic wave function. Low-dimensional semiconductor nanomaterials with at least one degree of spatial confinement have optoelectronic properties that are tunable with size and environment (dielectric and chemical) and are of particular interest for optoelectronic applications such as light detection, light harvesting, and photocatalysis. By combining nanomaterials of differing dimensionalities, mixed-dimensional heterojunctions (MDHJs) exploit the desirable characteristics of their components. For example, the strong optical absorption of zero-dimensional (0D) materials combined with the high charge carrier mobilities of two-dimensional (2D) materials widens the spectral response and enhances the responsivity of mixed-dimensional photodetectors, which has implications for ultrathin, flexible optoelectronic devices. MDHJs are highly sensitive to (i) interfacial chemistry because of large surface area-to-volume ratios and (ii) electric fields, which are incompletely screened because of the ultrathin nature of MDHJs. This sensitivity presents opportunities for control of physical phenomena in MDHJs through chemical modification, optical excitation, externally applied electric fields, and other environmental parameters. Since this fast-moving research area is beginning to pose and answer fundamental questions that underlie the fundamental optoelectronic behavior of MDHJs, it is an opportune time to assess progress and suggest future directions in this field.In this Account, we first outline the characteristic properties, advantages, and challenges for low-dimensional materials, many of which arise as a result of quantum confinement effects. The optoelectronic properties and performance of MDHJs are primarily determined by dynamics of excitons and charge carriers at their interfaces, where these particles tunnel, trap, scatter, and/or recombine on the time scales of tens of femtoseconds to hundreds of nanoseconds. We discuss several photophysical phenomena that deviate from those observed in bulk heterojunctions, as well as factors that can be used to vary, probe, and ultimately control the behavior of excitons and charge carriers in MDHJ systems. We then discuss optoelectronic applications of MDHJs, namely, photodetectors, photovoltaics, and photocatalysts, and identify current performance limits compared to state-of-the-art benchmarks. Finally, we suggest strategies to extend the current understanding of dynamics in MDHJs toward the realization of stimuli-driven responses, particularly with respect to exciton delocalization, quantum emission, interfacial morphology, responsivity to external stimuli, spin selectivity, and usage of chemically reactive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.9b00581 | DOI Listing |
Nano Lett
January 2025
Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada.
The generation of interlayer charge transfer excitons upon photoexcitation is strongly desirable for two-dimensional (2D) materials stacked through van der Waals interactions. In this work, we investigate photoinduced charge transfer in silicanes (SiH) with three typical stackings. A concept of the regional natural hole orbital and its conjugated particle orbital is developed to characterize excited states in solids.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Electronics and Information, Xi'an Polytechnic University, Xian, People's Republic of China.
Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.
Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP/CsBiICl vdWH as well as its tunable band structure an external electric field. The AlP/CsBiICl vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!