Layer-by-Layer Printing of Photopolymers in 3D: How Weak is the Interface?

ACS Appl Mater Interfaces

Materials Science and Technology of Polymers, Faculty of Science and Technology , University of Twente, Drienerlolaan 5 , 7522 NB Enschede , The Netherlands.

Published: February 2020

Additive manufacturing or, as also called, three-dimensional (3D) printing is considered as a game-changer in replacing traditional processing methods in numerous applications; yet, it has one intrinsic potential weakness related to bonding of layers formed during the printing process. Prior to finding solutions for improvement, a thorough quantitative understanding of the mechanical properties of the interface is needed. Here, a quantitative analysis of the nanomechanical properties in 3D printed photopolymers formed by digital light processing (DLP) stereolithography (SLA) is shown. Mapping of the contact Young's modulus across the layered structure is performed by atomic force microscopy (AFM) with a submicrometer resolution. The peakforce quantitative nanomechanical mapping (PF-QNM) mode was employed in the AFM experiments. The layered specimens were obtained from an acrylate-based resin (PR48, Autodesk), containing also a light-absorbing dye. We observed local depressions with values up to 30% of the maximum stiffness at the interface between the consecutively deposited layers, indicating local depletion of molecular cross-link density. The thickness values of the interfacial layers were approximately 11 μm, which corresponds to ∼22% of the total layer thickness (50 μm). We attribute this to heterogeneities of the photopolymerization reaction, related to (1) atmospheric oxygen inhibition and (2) molecular diffusion across the interface. Additionally, a pronounced stiffness decay was observed across each individual layer with a skewed profile. This behavior was rationalized by a spatial variation of the polymer cross-link density related to the variations of light absorption within the layers. This is caused by the presence of light absorbers in the printed material, resulting in a spatial decay of light intensity during photopolymerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033657PMC
http://dx.doi.org/10.1021/acsami.9b22272DOI Listing

Publication Analysis

Top Keywords

cross-link density
8
layer-by-layer printing
4
printing photopolymers
4
photopolymers weak
4
weak interface?
4
interface? additive
4
additive manufacturing
4
manufacturing called
4
called three-dimensional
4
three-dimensional printing
4

Similar Publications

The degree of cross-linking of polyacrylic acid affects the fibrogenicity in rat lungs.

Sci Rep

January 2025

Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.

Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.

View Article and Find Full Text PDF

Characterization of Photo-Cross-Linked Polyethylene Pipes for Geothermal Energy Storage.

ACS Omega

January 2025

Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Boras, Sweden.

This study investigates the morphology and thermo-mechanical properties of cross-linked polyethylene (PEX) pipes for potential use in high-temperature borehole thermal energy storage systems. Particular attention is given to a novel type of PEX pipe produced through photoinitiated cross-linking (PEX-e). Two formulations, PEX-e1 and PEX-e2, were analyzed and compared to peroxide-cross-linked polyethylene (PEX-a) and non-cross-linked bimodal polyethylene (PE100) pipes.

View Article and Find Full Text PDF

Rubbers prepared from technical poly(butadiene) and natural poly(isoprene) are studied by field-cycling (FC) H NMR relaxometry to elucidate the changes of the relaxation spectrum. Starting with the non-cross-linked polymer successively cross-links are introduced via sulfur or peroxide vulcanization. Applying an advanced home-built relaxometer allows one to probe entanglement dynamics in addition to Rouse dynamics.

View Article and Find Full Text PDF

Multi-scale inferomedial femoral neck bone quality in type 2 diabetes patients with fragility fracture.

Bone

March 2025

Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India. Electronic address:

Both trabecular and cortical bone undergo changes at multiple scales. We previously demonstrated the multi-scale changes in trabecular bone quality that contribute to bone fragility in type 2 diabetes (T2D). The link between increased fragility in T2D and multi-scale changes in cortical bone and their interaction with glycation remains unclear.

View Article and Find Full Text PDF

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!