By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201900745 | DOI Listing |
ACS Omega
October 2024
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
Nano Lett
October 2024
Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
Plasmonic nanoparticles (NPs) with chiral geometries have wide applications from chiral molecular sensing to enantioselective catalysis. The synthesis of chiral plasmonic nanoparticles using circularly polarized light (CPL) has attracted a considerable amount of attention because it eliminates the need for chiral molecules. However, NPs need to be immobilized on a solid substrate during synthesis.
View Article and Find Full Text PDFMol Biotechnol
September 2024
Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou, 253023, China.
As a two-dimensional material, gold nanotriangles (GNTs) are rarely studied in the field of gene delivery. In this study, a temperature-responsive GNTs was developed as a novel carrier for gene delivery. The temperature-sensitive copolymer PNIPAm-g-PEI was grafted onto the surface of GNTs to construct a PNIPAm-g-PEI/GNTs composite controllable release platform.
View Article and Find Full Text PDFNanoscale Adv
September 2024
Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
Nanomaterials made of noble metals have been actively utilized in sensorics and bioanalytics. Nanoparticles of anisotropic shapes are promising for increasing sensitivity due to the generated hotspots of electron density. Such structures can be effectively manufactured by a relatively accessible colloidal synthesis.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
The rapidly developing miniaturization in numerous fields require low-demanding but robust methods of nanomaterial production. Colloidal synthesis provides great flexibility in product material, size, and shape. Gold nanoparticle synthesis has been thoroughly studied, however, recent reports on mechanistic insights of crystal formation have been hindered by the numerous procedures and parameter optimization works.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!