Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate unique evolutions of the shape of ferrofluid droplets during their motion over horizontal and inclined planes assisted by an applied field. We substantially extend the basic study regarding the motion of the ferrofluid droplets to address state-of-the-art parametric variation. While doing so, we describe some uncommon phenomena such as pearling, which has not been reported to date in connection with the motion of ferrofluid droplets. The contact angle varies dynamically with the motion of the droplet over horizontal and inclined planes. The shape of the ferrofluid droplet evolves continuously with the variation of different parameters. The spheroidal shape transforms into oblate, pear shape and tear drop with a symmetric corner and finally tears into daughter globules, famously known as pearling. The field strength, magnet velocity and concentration of nanoparticles control the motion, deformation and pearling. We emphasize that pearling is predominant during horizontal translation and depreciates during the ascent of an inclined plane (due to the resolved component of gravity). From a scale analysis, we demonstrate that the deformation and pearling can be predicted in terms of the magnetic Bond number, magnetic Laplace number and Bond number.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm02224d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!