Galanin is a neuropeptide expressed by sensory neurones innervating the gastrointestinal (GI) tract. Galanin displays inhibitory effects on vagal afferent signaling within the upper GI tract, and the goal of this study was to determine the actions of galanin on colonic spinal afferent function. Specifically, we sought to evaluate the effect of galanin on lumbar splanchnic nerve (LSN) mechanosensitivity to noxious distending pressures and the development of hypersensitivity in the presence of inflammatory stimuli and colitis. Using ex vivo electrophysiological recordings we show that galanin produces a dose-dependent suppression of colonic LSN responses to mechanical stimuli and prevents the development of hypersensitivity to acutely administered inflammatory mediators. Using galanin receptor (GalR) agonists, we show that GalR1 activation, but not GalR2/3 activation, suppresses mechanosensitivity. The effect of galanin on colonic afferent activity was not observed in tissue from mice with dextran sodium sulfate-induced colitis. We conclude that galanin has a marked suppressive effect on colonic mechanosensitivity at noxious distending pressures and prevents the acute development of mechanical hypersensitivity to inflammatory mediators, an effect not seen in the inflamed colon. These actions highlight a potential role for galanin in the regulation of mechanical nociception in the bowel and the therapeutic potential of targeting galaninergic signaling to treat visceral hypersensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971316PMC
http://dx.doi.org/10.14814/phy2.14326DOI Listing

Publication Analysis

Top Keywords

galanin
10
inflammatory stimuli
8
galanin colonic
8
mechanosensitivity noxious
8
noxious distending
8
distending pressures
8
development hypersensitivity
8
inflammatory mediators
8
galanin suppresses
4
suppresses visceral
4

Similar Publications

Background: Sleep dysfunction is commonly seen in Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP), potentially worsening these conditions. Investigating early neuropathological changes in human sleep-promoting neurons, which often precede cognitive decline, is crucial for understanding the basis for sleep dysfunction as possible treatments yet remain underexplored. We used postmortem brains of AD and PSP patients to quantify neuronal numbers and tau burden in the intermediate nucleus of the hypothalamus (IntN), VLPO analog, known for its role in sleep maintenance.

View Article and Find Full Text PDF

Neuropeptides: The Evergreen Jack-of-All-Trades in Neuronal Circuit Development and Regulation.

Bioessays

December 2024

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Neuropeptides are key modulators of adult neurocircuits, balancing their sensitivity to both excitation and inhibition, and fine-tuning fast neurotransmitter action under physiological conditions. Here, we reason that transient increases in neuropeptide availability and action exist during brain development for synapse maturation, selection, and maintenance. We discuss fundamental concepts of neuropeptide signaling at G protein-coupled receptors (GPCRs), with a particular focus on how signaling at neuropeptide GPCRs could underpin neuronal morphogenesis.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is one of the most common diseases affecting millions of people worldwide. The use of existing antidepressants in many cases does not allow achieving stable remission, probably due to insufficient understanding of pathological mechanisms. This indicates the need for the development of more effective drugs based on in-depth understanding of MDD's pathophysiology.

View Article and Find Full Text PDF

Effect of galanin-like peptide on hypothalamic kisspeptin expression in female Zucker fatty rats.

Neurosci Lett

January 2025

Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.

Kisspeptin and galanin-like peptide (GALP) neurons in the hypothalamic arcuate nucleus (ARC) are involved in gonadotropin-releasing hormone (GnRH) neuron-mediated pulsatile luteinizing hormone (LH) secretion. Zucker fatty (ZF) rats display a leptin receptor gene abnormality and suppressed pulsatile LH secretion. ZF rats reportedly exhibit low hypothalamic GALP and kisspeptin expression, and GALP administration induces LH release in ZF rats.

View Article and Find Full Text PDF

Studies conducted on mammalian models have indicated the role of galanin-like peptide (GALP) in appetite regulation. For the first time, the present study examines the effects of this peptide on feed consumption and behavioral changes, as well as its interaction with dopaminergic and neuropeptide Y (NPY) systems in broilers. In experiment 1, broilers were injected with GALP (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!