Some animals have evolved task differentiation among their eyes. A particular example is spiders, where most species have eight eyes, of which two (the principal eyes) are used for object discrimination, whereas the other three pairs (secondary eyes) detect movement. In the ctenid spider Cupiennius salei, these two eye types correspond to two visual pathways in the brain. Each eye is associated with its own first- and second-order visual neuropil. The second-order neuropils of the principal eyes are connected to the arcuate body, whereas the second-order neuropils of the secondary eyes are linked to the mushroom body. We explored the principal- and secondary eye visual pathways of the jumping spider Marpissa muscosa, in which size and visual fields of the two eye types are considerably different. We found that the connectivity of the principal eye pathway is the same as in C. salei, while there are differences in the secondary eye pathways. In M. muscosa, all secondary eyes are connected to their own first-order visual neuropils. The first-order visual neuropils of the anterior lateral and posterior lateral eyes are connected with a second-order visual neuropil each and an additional shared one (L2). In the posterior median eyes, the axons of their first-order visual neuropils project directly to the arcuate body, suggesting that the posterior median eyes do not detect movement. The L2 might function as an upstream integration center enabling faster movement decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.24861 | DOI Listing |
Schizophr Bull
January 2025
Psychology, Michigan State University, East Lansing, MI, 48824, United States.
Background And Hypothesis: Sequential saccade planning requires corollary discharge (CD) signals that provide information about the planned landing location of an eye movement. These CD signals may be altered among individuals with schizophrenia (SZ), providing a potential mechanism to explain passivity and anomalous self-experiences broadly. In healthy controls (HC), a key oculomotor CD network transmits CD signals from the thalamus to the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and also remaps signals from FEF to IPS.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
College of Life Sciences, Qingdao University, Qingdao 266071, China.
C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Information Science and Engineering, Hohai University, Nanjing 211100, China.
(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China.
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals.
View Article and Find Full Text PDFBr J Vis Impair
September 2024
The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
Cerebral visual impairment (CVI) is a brain-based visual disorder associated with injury and/or maldevelopment of central visual pathways. Visuospatial processing impairments are a cardinal feature of the complex clinical profile of individuals with CVI. Here, we assessed visuospatial processing abilities using a classic conjunction search task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!