Some animals have evolved task differentiation among their eyes. A particular example is spiders, where most species have eight eyes, of which two (the principal eyes) are used for object discrimination, whereas the other three pairs (secondary eyes) detect movement. In the ctenid spider Cupiennius salei, these two eye types correspond to two visual pathways in the brain. Each eye is associated with its own first- and second-order visual neuropil. The second-order neuropils of the principal eyes are connected to the arcuate body, whereas the second-order neuropils of the secondary eyes are linked to the mushroom body. We explored the principal- and secondary eye visual pathways of the jumping spider Marpissa muscosa, in which size and visual fields of the two eye types are considerably different. We found that the connectivity of the principal eye pathway is the same as in C. salei, while there are differences in the secondary eye pathways. In M. muscosa, all secondary eyes are connected to their own first-order visual neuropils. The first-order visual neuropils of the anterior lateral and posterior lateral eyes are connected with a second-order visual neuropil each and an additional shared one (L2). In the posterior median eyes, the axons of their first-order visual neuropils project directly to the arcuate body, suggesting that the posterior median eyes do not detect movement. The L2 might function as an upstream integration center enabling faster movement decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.24861DOI Listing

Publication Analysis

Top Keywords

visual pathways
12
secondary eyes
12
eyes connected
12
first-order visual
12
visual neuropils
12
eyes
10
visual
9
pathways brain
8
jumping spider
8
spider marpissa
8

Similar Publications

Background And Hypothesis: Sequential saccade planning requires corollary discharge (CD) signals that provide information about the planned landing location of an eye movement. These CD signals may be altered among individuals with schizophrenia (SZ), providing a potential mechanism to explain passivity and anomalous self-experiences broadly. In healthy controls (HC), a key oculomotor CD network transmits CD signals from the thalamus to the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and also remaps signals from FEF to IPS.

View Article and Find Full Text PDF

C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes.

View Article and Find Full Text PDF

(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.

View Article and Find Full Text PDF

The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals.

View Article and Find Full Text PDF

Impaired Visuospatial Processing in Cerebral Visual Impairment Revealed by Performance on a Conjunction Visual Search Task.

Br J Vis Impair

September 2024

The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.

Cerebral visual impairment (CVI) is a brain-based visual disorder associated with injury and/or maldevelopment of central visual pathways. Visuospatial processing impairments are a cardinal feature of the complex clinical profile of individuals with CVI. Here, we assessed visuospatial processing abilities using a classic conjunction search task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!