Human αB-crystallin (HSPB5) is frequently modified post-translationally by UV radiation, oxidation, and age-associated processes, which complicates functional analyses of the protein using natural sources. Thus, determining the biological function of HSPB5 at the molecular structure level requires unmodified protein. Here, we employed an Escherichia coli cell-free protein synthesis system to prepare unmodified, functionally active human HSPB5. An S30 extract prepared from E. coli strain BL21 (DE3) was used for HSPB5 synthesis. The efficacy of protein synthesis was assessed by monitoring influencing factors, such as the concentrations of Mg and other reaction mixture constituents, and by evaluating batch and/or dialysis synthesis systems. Chaperone-like activity of synthesized HSPB5 was assayed using alcohol dehydrogenase (ADH) under thermal stress. The amount of HSPB5 synthesized using the cell-free system depended significantly on the concentration of Mg in the reaction mixture. Use of condensed S30 extract and increased levels of amino acids promoted HSPB5 production. Compared with the batch system, HSPB5 synthesis was markedly increased using the dialysis system. The construction vector played a critical role in regulating the efficacy of protein synthesis. HSPB5 synthesized using the cell-free system had a native molecular mass, as determined by mass spectrometry analysis. The co-presence of synthesized HSPB5 suppressed heat-associated denaturation of ADH. Human HSPB5 synthesized using the cell-free system thus retains functional activity as a molecular chaperone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058722 | PMC |
http://dx.doi.org/10.1007/s12192-020-01073-5 | DOI Listing |
Cells
December 2024
Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA.
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.
View Article and Find Full Text PDFMedeni Med J
September 2024
Istanbul Aydin University Faculty of Medicine, Department of Physiology, Istanbul, Türkiye.
Objective: Ischemia-reperfusion (IR) of the aorta is a significant contributor to the development of postoperative acute lung damage after abdominal aortic surgery. The aim of the present study was to examine the effect of alpha B-crystallin, a small heat shock protein (known as HspB5), on lung injury induced by abdominal aortic IR in rats.
Methods: Male Sprague-Dawley rats were divided into three groups: control, ischemia-reperfusion (IR, 90 min ischemia and 180 min reperfusion), and alpha B-crystallin +IR.
Neurol Int
August 2024
Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.
J Proteome Res
August 2024
Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195-1700, United States.
In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification.
View Article and Find Full Text PDFBiomed Pharmacother
June 2024
College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
Alzheimer's disease (AD) is a global medical challenge. Studies have shown that neurotoxicity caused by pathological aggregation of β-amyloid (Aβ) is an important factor leading to AD. Therefore, inhibiting the pathological aggregation of Aβ is the key to treating AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!