Purpose: Isocitrate dehydrogenase 1 (IDH1) mutations are associated with improved survival in gliomas. Depending on the IDH1 status, TERT promoter mutations affect prognosis. IDH1 mutations are associated with alpha-thalassemia/mental retardation syndrome X-linked (ATRX) mutations and alternative lengthening of telomeres (ALT), suggesting an interaction between IDH1 and telomeres. However, little is known how IDH1 mutations affect telomere maintenance.
Methods: We analyzed cell-specific telomere length (CS-TL) on a single cell level in 46 astrocytoma samples (WHO II-IV) by modified immune-quantitative fluorescence in situ hybridization, using endothelial cells as internal reference. In the same samples, we determined IDH1/TERT promoter mutation status and ATRX expression. The interaction of IDH1 mutation and CS-TL was studied in vitro using an IDH1 doxycycline-inducible glioma cell line system.
Results: Virtually all ALT astrocytomas had normal TERT promoter and lacked ATRX expression. Further, all ALT samples had IDH1 mutations, resulting in a significantly longer CS-TL of IDH1 gliomas, when compared to their wildtype counterparts. Conversely, TERT promotor mutations were associated with IDH, ATRX expression, lack of ALT and short CS-TL. ALT, TERT promoter mutations, and CS-TL remained without prognostic significance, when correcting for IDH1 status. In vitro, overexpression of IDH in the glioma cell line LN319 resulted in downregulation of ATRX and rapid TERT-independent telomere lengthening consistent with ALT.
Conclusion: ALT is the major telomere maintenance mechanism in IDH mutated astrocytomas, while TERT promoter mutations were associated with IDH glioma. IDH1 downregulates ATRX expression in vitro resulting in ALT, which may contribute to the strong association of IDH1 mutations, ATRX loss, and ALT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076064 | PMC |
http://dx.doi.org/10.1007/s11060-020-03394-y | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFThis study aimed to evaluate the impact of the myelodysplasia-related gene (MRG) as well as additional gene mutations on outcomes in intensively treated patients with -mutated ( ) AML. Targeted DNA sequencing of 263 genes was performed in 568 AML patients (median age: 59 years) entered into the prospective AMLSG 09-09 treatment trial. Most commonly co-mutated genes were (49.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences.
View Article and Find Full Text PDFJ Surg Oncol
January 2025
Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA.
Background: Biliary tract cancers (BTCs) represent distinct biological and genomic entities. Anatomic and geographic heterogeneity in genomic profiling of BTC subtypes, genomic co-alterations, and their impact on long-term outcomes are not well defined.
Methods: Genomic data to characterize alterations among patients with BTCs were derived from the AACR GENIE registry (v15.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!