Regrowth of zebrafish caudal fin regeneration is determined by the amputated length.

Sci Rep

Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.

Published: January 2020

Fish have a high ability to regenerate fins, including the caudal fin. After caudal fin amputation, original bi-lobed morphology is reconstructed during its rapid regrowth. It is still controversial whether positional memory in the blastema cells regulates reconstruction of fin morphology as in amphibian limb regeneration, in which limb blastema cells located at the same proximal-distal level have the same positional identity. We investigated growth period and growth rate in zebrafish caudal fin regeneration. We found that both the growth period and growth rate differed for fin rays that were amputated at the same proximal-distal level, indicating that it takes different periods of time for fin rays to restore their original lengths after straight amputation. We also show that more proximal amputation takes longer period to reconstruct the original morphology/size than more distal amputation. Statistical analysis suggested that both the growth period/rate are determined by amputated length (depth) regardless of the fin ray identity along dorsal-ventral axis. In addition, we suggest the possibility that the structural/physical condition such as width of the fin ray at the amputation site (niche at the stump) may determine the growth period/rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971026PMC
http://dx.doi.org/10.1038/s41598-020-57533-6DOI Listing

Publication Analysis

Top Keywords

caudal fin
16
fin
9
zebrafish caudal
8
fin regeneration
8
determined amputated
8
amputated length
8
blastema cells
8
proximal-distal level
8
growth period
8
period growth
8

Similar Publications

Objective: Obesity has become one of the major public health issues and is associated with various comorbidities, including type 2 diabetes mellitus, dyslipidemia, and hypertension. Lychee seeds are considered promising ingredients for developing functional foods owing to their nutraceutical properties and phytochemical composition. This study aimed to induce obesity in zebrafish () through a hyperlipidic diet supplemented with different concentrations of lychee seed flour and to evaluate its effects on adipose tissue, biochemical parameters, oxidative stress, and caudal fin regeneration.

View Article and Find Full Text PDF

Early development of vertebral column and appendicular skeleton in Naozhou Larimichthys crocea (Richardson, 1846).

J Fish Biol

January 2025

Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.

Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).

View Article and Find Full Text PDF

-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.

View Article and Find Full Text PDF

The albino northern snakehead (Channa argus) is an aquaculture species characterized by heritable albino body color, in contrast to the typical coloration. Additionally, there are gray- and golden-finned individuals, which exhibit distinct coloration in their caudal fins. We performed RNA-seq to profile the transcriptome of caudal fin tissues in albino gray-finned and golden-finned C.

View Article and Find Full Text PDF

Novel peptide inhibitor of matrix Metalloproteinases-1 from pufferfish skin collagen hydrolysates and its potential Photoprotective activity via the MAPK/AP-1 signaling pathway.

J Photochem Photobiol B

January 2025

Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China. Electronic address:

Takifugu bimaculatus, a pufferfish species farmed in Fujian Province, is known for its non-toxic flesh and collagen-rich skin. We identified a novel collagen-derived matrix metalloproteinase 1 (MMP-1) inhibitory peptide, from T. bimaculatus skin with potent anti-photoaging properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!