AI Article Synopsis

  • * Using next-generation sequencing (NGS), researchers identified a novel mutation (c.-22-155G > T) in the intronic region of SERPING1 in two patients, which was confirmed as pathogenic through bioinformatics analysis and co-segregation with the disease in their families.
  • * The findings suggest that deeper genetic analysis methods, like NGS, should be employed for diagnosing C1-INH deficiency in patients when traditional testing does not yield results.

Article Abstract

Background: In about 5% of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) no mutation in the SERPING1 gene is detected.

Methods: C1-INH-HAE cases with no mutation in the coding region of SERPING1 after conventional genotyping were examined for defects in the intronic or untranslated regions of the gene. Using a next-generation sequencing (NGS) platform targeting the entire SERPING1, 14 unrelated C1-INH-HAE patients with no detectable mutations in the coding region of the gene were sequenced. Detected variants with a global minor allele frequency lower than the frequency of C1-INH-HAE (0.002%), were submitted to in silico analysis using ten different bioinformatics tools. Pedigree analysis and examination of their pathogenic effect on the RNA level were performed for filtered in variants.

Results: In two unrelated patients, the novel mutation c.-22-155G > T was detected in intron 1 of the SERPING1 gene by the use NGS and confirmed by Sanger sequencing. All bioinformatics tools predicted that the variant causes a deleterious effect on the gene and pedigree analysis showed its co-segregation with the disease. Degradation of the mutated allele was demonstrated by the loss of heterozygosity on the cDNA level. According to the American College of Medical Genetics and Genomics 2015 guidelines the c.-22-155G > T was curated as pathogenic.

Conclusions: For the first time, a deep intronic mutation that was detected by NGS in the SERPING1 gene, was proven pathogenic for C1-INH-HAE. Therefore, advanced DNA sequencing methods should be performed in cases of C1-INH-HAE where standard approaches fail to uncover the genetic alteration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.alit.2019.12.009DOI Listing

Publication Analysis

Top Keywords

serping1 gene
12
deep intronic
8
hereditary angioedema
8
angioedema c1-inhibitor
8
c1-inhibitor deficiency
8
coding region
8
bioinformatics tools
8
pedigree analysis
8
serping1
6
c1-inh-hae
6

Similar Publications

Advances in the Pathogenesis of Hereditary Angioedema.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.

View Article and Find Full Text PDF

Urinary Immune Complexes Reflect Renal Pathology in Lupus Nephritis.

Diagnostics (Basel)

December 2024

Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.

Background/objectives: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), involving immune complex deposition in the kidneys. While renal biopsy is the diagnostic gold standard, its invasiveness limits frequent use, driving the need for non-invasive urinary biomarkers to monitor disease progression and response to treatment. This study aimed to identify and validate urinary biomarkers for LN.

View Article and Find Full Text PDF

Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease.

Int Immunopharmacol

December 2024

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD.

View Article and Find Full Text PDF

Phenotypic and molecular characterization of the largest worldwide cluster of hereditary angioedema type 1.

PLoS One

December 2024

School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad del Rosario, Bogotá D.C., Colombia.

Hereditary angioedema type 1 (HAE1) is a rare, genetically heterogeneous, and autosomal dominant disease. It is a highly variable, insidious, and potentially life-threatening condition, characterized by sudden local, often asymmetric, and episodic subcutaneous and submucosal swelling, caused by pathogenic molecular variants in the SERPING1 gene, which codes for C1-Inhibitor protein. This study performed the phenotypic and molecular characterization of a HAE1 cluster that includes the largest number of affected worldwide.

View Article and Find Full Text PDF

Introduction: Gastroesophageal reflux disease (GERD) is a chronic inflammatory gastrointestinal disease, which has no thoroughly effective or safe treatment. Elevated oxidative stress is a common consequence of chronic inflammatory conditions.

Methods: We employed Summary-data based MR (SMR) analysis to assess the associations between gene molecular characteristics and GERD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!