Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study.

J Biomech

School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Hydrodynamics (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: March 2020

Although arterial blood flow is physiologically non-periodic under resting conditions, periodic flow assumption has been widely adopted in most hemodynamic studies. So far, it remains unclear how the non-periodicity of blood flow would influence local hemodynamic parameters, especially wall shear stress (WSS) that associates closely with endothelial function and vascular disease. In this study, numerical simulations of blood flows in sixteen normal carotid artery bifurcations were performed under measured non-periodic and averaged periodic flow conditions, respectively, with the obtained results being compared in terms of five typical WSS metrics (i.e., mean WSS (MWSS), time-averaged WSS (TAWSS), oscillatory shear index (OSI), transverse WSS (transWSS), and average temporal gradient of WSS (WSSTG)) in the atheroprone low-WSS regions. It was found that simplifying the physiologically non-periodic flow condition into a periodic one did not significantly alter the major features of WSS distribution, but resulted in underestimations of some WSS metrics. Specifically, the degree of underestimation was largest (27.2% ± 8.3%) for WSSTG, smallest (0.5% ± 0.4%) for MWSS, while moderate (5.1% ± 3.2% ~ 9.2% ± 4.1%) for other WSS metrics. Statistical analyses revealed that the cycle-to-cycle variability of flow velocity waveform (var-V) and the planarity of internal carotid artery correlated strongly with the periodic flow assumption-induced underestimations of WSS metrics. These findings suggest that taking the non-periodic characteristic of blood flow into consideration could be important for studying hemodynamics in arteries with a large var-V or specific morphological characteristics, especially when WSSTG is the main hemodynamic parameter of concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2020.109617DOI Listing

Publication Analysis

Top Keywords

blood flow
16
wss metrics
16
carotid artery
12
periodic flow
12
wss
10
flow
9
non-periodicity blood
8
flow influence
8
wall shear
8
shear stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!