Glycoscience has been recognized as an important area in biomedical research. Currently, a major obstacle for glycoscience study is the lack of diverse, biomedically relevant, and complex glycans in quantities sufficient for exploring their structural and functional aspects. Complementary to chemoenzymatic synthesis, natural glycans could serve as a great source of biomedically relevant glycans if they are available in sufficient quantities. We have recently developed oxidative release of natural glycans (ORNG) for large-scale release of -glycans as free reducing glycans. While free reducing glycans can be readily derivatized with ultraviolet or fluorescent tags for high-performance liquid chromatography (HPLC) and mass spectrometry (MS) analysis, it is difficult to remove tags for the regeneration of free reducing glycans without affecting the structural integrity of glycans. To address this inconvenience, we explored the use of a cleavable tag, -benzylhydroxylamine (BHA). Free reducing glycans are easily and efficiently labeled with BHA under mild conditions, enabling UV detection during HPLC purification. Individual glycan-BHA conjugates can then be separated using multidimensional HPLC and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS. The BHA tag can then be easily removed by palladium-on-carbon (Pd/C)-catalyzed hydrogenation to efficiently regenerate free reducing glycans with little effect on glycan structures. This procedure provides a simple and straightforward way to tag free reducing glycans for purification at a preparative scale using multidimensional HPLC and subsequently recover purified free reducing glycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/2472630319898150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!