Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system.

Sci Total Environ

MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: April 2020

To determine the bioavailability and translocation of metal oxide nanoparticles (MONPs) in the soil-rice plant system, we examined the accumulation and micro-distribution of ZnO nanoparticles (NPs), CuO NPs and CeO NPs (50, 100 and 500 mg/kg) in the paddy soil and rice plants under flooded condition for 30 days using single-step chemical extraction and diffusive gradients in thin films (DGT) technique combined with micro X-ray fluorescence spectroscopy (μ-XRF). The results show that various MONPs changed the soil properties, especially the redox potential was enhanced to -165.33 to -75.33 mV compared to the control. The extraction efficiency of Zn, Cu and Ce in the paddy soil from high to low was EDTA, DTPA, CaCl and DGT. Moreover, exposure to 500 mg/kg CuO NPs and CeO NPs induced the primary accumulation of Cu and Ce elements in rice roots as high as 235.48 mg Cu/kg and 164.84 mg Ce/kg, respectively, while the Zn concentration in shoots was up to 313.18 mg/kg under highest ZnO NPs with a 1.5 of translocation factor. The effect of MONPs on the plant growth was mainly related to the chemical species and solubility of MONPs. Micro-XRF analysis shows that Zn was mostly located in the root cortex while Cu was primarily accumulated in the root exodermis and few Ce distributed in the root. Pearson correlation coefficients indicate that only DTPA-extracted metals in soil were significantly and well correlated to the Zn, Cu and Ce accumulation in rice seedlings exposed to MONPs. This work is of great significance for evaluating the environmental risks of MONPs in soil and ensuring the safety of agricultural products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.136662DOI Listing

Publication Analysis

Top Keywords

bioavailability translocation
8
translocation metal
8
metal oxide
8
oxide nanoparticles
8
soil-rice plant
8
plant system
8
cuo nps
8
nps ceo
8
ceo nps
8
paddy soil
8

Similar Publications

Comparison of cadmium pathways in a high Cd accumulating cultivar versus a low Cd accumulating cultivar of Theobroma cacao L.

Plant Physiol Biochem

January 2025

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université G. Eiffel, ISTerre, Grenoble, France. Electronic address:

Understanding cadmium (Cd) pathways in cacao trees is critical for developing Cd mitigation strategies. This study investigates whether Cd uptake and translocation mechanisms differ between a low and a high Cd-accumulating cacao cultivar. We sampled three replicate trees of each cultivar, and a grafted cultivar that shared the same scion as the low Cd accumulator but had a different rootstock.

View Article and Find Full Text PDF

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Obesity is a global epidemic associated with chronic inflammation, oxidative stress, and metabolic disorders. Bariatric surgery is a highly effective intervention for sustained weight loss and the improvement of obesity-related comorbidities. However, post-surgery nutritional deficiencies, including vitamin E, remain a concern.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the microbial diversity and metal accumulation in different ecological sites around Lubumbashi, a copper-rich area in Africa.
  • Four distinct sites were investigated: a residential area, an agricultural dry field, an agricultural wetland, and a remediated tailing, with the tailing showing the highest metal concentrations.
  • The findings highlight specific bacterial and fungal compositions at each site, indicating a relationship between environmental conditions and microbial communities, while the investigated plant species showed potential for metal phytoextraction despite being an excluder for copper and cobalt.
View Article and Find Full Text PDF

Neuroblastoma (NB) is a rare embryonal neuroendocrine tumor that primarily affects children aged 5 years old or younger. In advanced stages, NB requires a multifaceted treatment approach, including a combination of surgery, chemo, and radiation therapy. However, high-risk NB is still associated with poor prognosis, long-term side effects, and a high chance of relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!