Characteristics and sex dimorphism of 17β-hydroxysteroid dehydrogenase family genes in the olive flounder Paralichthys olivaceus.

J Steroid Biochem Mol Biol

Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China. Electronic address:

Published: May 2020

Sex steroid hormones play important roles in fish sex differentiation, gonadal development and secondary sexual characteristics. Olive flounder Paralichthys olivaceus is a valuable commercial marine fish species and has marked sexual dimorphism. However, the mechanisms of action of sex hormones in flounder sex are still unclear. In this study, a total of ten Hsd17b family genes, including Hsd17b3, -4, -7, -8, -9, -10, -12a, -12b, -14 and -15, were identified in the flounder, which encoded critical enzymes acting on sex steroid synthesis and metabolism. Hsd17b genes were distributed on eight chromosomes. Hsd17b12a and -12b were located on chromosomes 19 and 7, respectively. It was speculated that these two genes were just highly similar rather than different transcripts derived from the same gene. According to the results of domain and motif analyses, they all belonged to the SDR superfamily and contained conserved Hsd17b motifs TGxxxGxG, PGxxxT, NNAG and YxxxK. Analysis of amino acid sequences predicted that Hsd17b1, -4, -7, -12a and -14 were hydrophilic proteins. The stability of Hsd17b1, -3 and -12b proteins was predicted to be low. The various Hsd17b family genes differed in tissue expression pattern, and Hsd17b10, -12a and -12b were highly expressed in the flounder ovary. Moreover, throughout gonadal development, Hsd17b3 was highly expressed in the testis, and Hsd17b1, -12a and -12b were highly expressed in the ovary, suggesting that they might play an important role in testosterone synthesis in the testis or estrogen synthesis in the ovary. Activities of Hsd17b3 at stages I-V were all significantly higher in the testis than in the ovary (P < 0.05, P < 0.01). Transfection analysis in HEK293T cells showed that Hsd17b1 and -3 were located in both the cytoplasm and nucleus. Additionally, after challenging fish with tamoxifen, Hsd17b3 expression level in the testis decreased significantly (P < 0.01), and in the ovary no significant change was observed. Moreover, the expression of Hsd17b1 in the ovary was significantly upregulated after injection with flutamide (P < 0.05). These findings introduce the characteristics of the flounder Hsd17b in subfamily, which contribute to our understanding of the regulation of sex steroid hormone synthesis in fish gonadal development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2020.105597DOI Listing

Publication Analysis

Top Keywords

family genes
12
-12a -12b
12
highly expressed
12
olive flounder
8
flounder paralichthys
8
paralichthys olivaceus
8
sex steroid
8
gonadal development
8
hsd17b family
8
hsd17b1 -12a
8

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Characterization of fungal carbonyl sulfide hydrolase belonging to clade D β-carbonic anhydrase.

FEBS Lett

January 2025

Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.

Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T.

View Article and Find Full Text PDF

Oligogenic risk score for Gilles de la Tourette syndrome reveals a genetic continuum of tic disorders.

J Appl Genet

January 2025

Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.

Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!