In recent years, polymer mechanochemistry has evolved as a methodology to provide insights into the action-reaction relationships of polymers and polymer-based materials and composites in terms of macroscopic force application (stress) and subsequent deformation (strain) through a mechanophore-assisted coupling of mechanical and chemical phenomena. The perplexity of the process, however, from the viewpoint of mechanophore activation via a molecular-scaled disruption of the structure that yields a macroscopically detectable optical signal, renders this otherwise rapidly evolving field challenging. Motivated by this, we highlight here recent advancements of polymer mechanochemistry with particular focus on the establishment of methodologies for the efficient activation and quantification of mechanophores and anticipate to aptly pinpoint unresolved matters and limitations of the respective approaches, thus highlighting possible developments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201900737 | DOI Listing |
Heliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy.
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States.
Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
High-performance polymers based on dynamic chemistry have been widely explored for multi-field advanced applications. However, noncovalent sacrificial bond-mediated energy dissipation mechanism causes a trade-off between mechanical toughness and resilience. Herein, we achieved the synchronous boost of seemingly conflicting material properties including mechanical robustness, toughness and elasticity via the incorporation of mechanical chemistry into traditional semi-crystalline networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!