Study Question: Does treatment of constitutional delay of growth and puberty (CDGP) in boys with aromatase inhibitor letrozole (Lz) or conventional low-dose testosterone (T) have differing effects on developing seminiferous epithelium?

Summary Answer: Anti-Müllerian hormone (AMH) declined similarly in both treatment groups, and the two Sertoli cell-derived markers (AMH and inhibin B (iB)) exhibited differing responses to changes in gonadotrophin milieu.

What Is Known Already: Boys with CDGP may benefit from puberty-inducing medication. Peroral Lz activates gonadotrophin secretion, whereas intramuscular low-dose T may transiently suppress gonadotrophins and iB.

Study Design, Size, Duration: Sera of 28 boys with CDGP who participated in a randomised, controlled, open-label trial at four paediatric centres in Finland between August 2013 and January 2017 were analysed. The patients were randomly assigned to receive either Lz (2.5 mg/day) (n = 15) or T (1 mg/kg/month) (n = 13) for 6 months.

Participants/materials, Setting, Methods: The 28 patients were at least 14 years of age, showed first signs of puberty, wanted medical attention for CDGP and were evaluated at 0, 3, 6 and 12 months of visits. AMH levels were measured with an electrochemiluminescence immunoassay and Lz levels with liquid chromatography coupled with tandem mass spectrometry.

Main Results And The Role Of Chance: AMH levels decreased in both treatment groups during the 12-month follow-up (P < 0.0001). Between 0 and 3 months, the changes in gonadotrophin levels (increase in the Lz group, decrease in the T group) correlated strongly with the changes in levels of iB (FSH vs iB, r = 0.55, P = 0.002; LH vs iB, r = 0.72, P < 0.0001), but not with the changes in AMH (P = NS). At 12 months, AMH levels did not differ between the groups (P = NS). Serum Lz levels (range, 124-1262 nmol/L) were largely explained by the Lz dose per weight (at 3 months r = 0.62, P = 0.01; at 6 months r = 0.52, P = 0.05). Lz levels did not associate with changes in indices of hypothalamic-pituitary-gonadal axis activity or Sertoli cell markers (in all, P = NS).

Limitations, Reasons For Caution: The original trial was not blinded for practical reasons and included a limited number of participants.

Wider Implications Of The Findings: In early puberty, treatment-induced gonadotrophin stimulus was unable to counteract the androgen-mediated decrease in AMH, while changes in iB levels were associated with changes in gonadotrophin levels. AMH decreased similarly in both groups during the treatment, reassuring safety of developing seminiferous epithelium in both treatment approaches. Since a fixed dose of Lz induced variable serum Lz levels with a desired puberty-promoting effect in all boys, more research is needed to aim at a minimal efficient dose per weight.

Study Funding/competing Interest(s): This study was supported by the Academy of Finland, the Foundation for Pediatric Research, the Emil Aaltonen Foundation, Sigrid Juselius Foundation and Helsinki University Hospital Research Funds. The authors have nothing to disclose.

Trial Registration Number: NCT01797718.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048712PMC
http://dx.doi.org/10.1093/humrep/dez231DOI Listing

Publication Analysis

Top Keywords

anti-müllerian hormone
8
constitutional delay
8
delay growth
8
growth puberty
8
treatment groups
8
boys cdgp
8
amh levels
8
hormone letrozole
4
levels
4
letrozole levels
4

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

The Tapetum Determinant 1 (TPD1) family proteins are known to play a crucial role in the regulation of reproduction in plants, including Cenchrus americanus (pearl millet). However, members of TPD1 family proteins have not been fully identified. The current study aims to identify and characterize the TPD1 family proteins in Cenchrus americanus (L.

View Article and Find Full Text PDF

Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enable adaptive insulin dosing control, they face numerous challenges, including safety and training efficiency, which have hindered their clinical application. This paper proposes a safe and efficient adaptive insulin delivery controller based on DRL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!