Background: Multidrug Resistant Pseudomonas aeruginosa (MDRPA) is a ubiquitous opportunistic organism that poses threat to the management of infections globally.

Objectives: The objectives of the current research were to assess the antibiotic resistance profiles as well as Multiple Antibiotic Resistance (MAR) Index of clinical isolates of P. aeruginosa associated with wound infections. Presence of Extended Spectrum Beta Lactamase genes (bla CTX-M, bla SHV and bla TEM) and Carbapenemase genes (bla KPC and blaNDM) were also determined among the isolates.

Methods: Swab samples were collected from 255 patients with wound infections. Bacterial identification was done by standard diagnostic tests. The identity of isolates was confirmed by the detection of the exoA gene using the PCR technique. Antibiotic susceptibility testing and resistance profile were determined using the disc diffusion method. Resistance genes were amplified by the PCR method.

Results: A total of 235 (92.2%) bacterial isolates were recovered from the wounds of the 255 patients, of these, 124 (52.8%) were Gram-negative bacilli while the remaining 111 (47.2%) were Gram-positive cocci. A total of 69 Pseudomonas aeruginosa strains were recovered from the wound specimens. Imipenem was the most effective antibiotic against these isolates (92.8% isolates were susceptible) while all isolates were resistant to Meropenem, Cefepime, Ticarcillin, Amoxicillin-clavulanic acid, Cefotaxime, Ampicillin and Cefpodoxime. All 69 Pseudomonas aeruginosa isolates were multidrug resistant (MDR). Of the isolates selected for PCR, all were positive for TEM, CTX-M and SHV genes while one-third were blaKPC and blaNDM producers.

Conclusion: This study demonstrated high prevalence of carbapenem-resistant strains of P. aeruginosa, suggesting that there is an urgent need in Nigeria for the enactment and enforcement of policies and necessary laws restricting the availability and indiscriminate use of antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871526520666200117112241DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
16
wound infections
12
multidrug resistant
8
antibiotic resistance
8
isolates
8
genes bla
8
255 patients
8
aeruginosa
6
multidrug-resistance genes
4
pseudomonas
4

Similar Publications

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

Genome mining and heterologous expression reveal streptacidin, a new lasso peptide from .

Org Biomol Chem

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

A lasso peptide biosynthetic gene cluster (BGC) was identified through genome mining in the species CGMCC 4.1857, which was isolated from acidic rhizosphere soil. The BGC was reconstructed in , leading to the heterologous production of a lasso peptide named streptacidin.

View Article and Find Full Text PDF

ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro.

Nat Microbiol

January 2025

Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary.

Despite ongoing antibiotic development, evolution of resistance may render candidate antibiotics ineffective. Here we studied in vitro emergence of resistance to 13 antibiotics introduced after 2017 or currently in development, compared with in-use antibiotics. Laboratory evolution showed that clinically relevant resistance arises within 60 days of antibiotic exposure in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, priority Gram-negative ESKAPE pathogens.

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.

Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!