The fundamental mechanisms of nutrient release from solid foods during gastric digestion consists of multiple elementary processes. These include the diffusion of gastric juice into the food matrix and its simultaneous enzymatic degradation and mechanical breakdown by the peristaltic activity of the stomach. Understanding the relative role of these key processes, in association with the composition and structure of foods, is of paramount importance for the design and manufacture of novel foods possessing specific target behavior within the body. This review covers the past and current literature with respect to the in-stomach processes leading to physical and biochemical disintegration of solid foods and release of nutrients. The review outlines recent progress in experimental and modeling methods used for studying food disintegration mechanisms and concludes with a discussion on potential future research directions in this field. Information from pharmaceutical science-based modeling approaches describing nutrient release kinetics as a result of food disintegration in the gastric environment is also reviewed. Future research aimed at understanding gastric digestion is important not only for setting design principles for novel food design but also for understanding mechanisms underpinning dietary guidelines to consume wholesome foods.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2019.1707770DOI Listing

Publication Analysis

Top Keywords

nutrient release
12
gastric digestion
12
solid foods
8
food disintegration
8
food
5
gastric
5
foods
5
food material
4
material properties
4
properties determining
4

Similar Publications

The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH, water, and carbon dioxide. The parasites of the .

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

Heterotrophic denitrification enhancement via effective organic matter degradation driven by suitable iron dosage in sediment.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:

The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!